{"title":"基于查询的基于矛盾偏好的无循环条件偏好网络学习","authors":"Fabien Labernia , Florian Yger , Brice Mayag , Jamal Atif","doi":"10.1007/s40070-017-0070-3","DOIUrl":null,"url":null,"abstract":"<div><p>Conditional preference networks (CP-nets) provide a compact and intuitive graphical tool to represent the preferences of a user. However, learning such a structure is known to be a difficult problem due to its combinatorial nature. We propose, in this paper, a new, efficient, and robust query-based learning algorithm for acyclic CP-nets. In particular, our algorithm takes into account the contradictions between multiple users’ preferences by searching in a principled way the variables that affect the preferences. We provide complexity results of the algorithm, and demonstrate its efficiency through an empirical evaluation on synthetic and on real databases.</p></div>","PeriodicalId":44104,"journal":{"name":"EURO Journal on Decision Processes","volume":"6 1","pages":"Pages 39-59"},"PeriodicalIF":2.3000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40070-017-0070-3","citationCount":"5","resultStr":"{\"title\":\"Query-based learning of acyclic conditional preference networks from contradictory preferences\",\"authors\":\"Fabien Labernia , Florian Yger , Brice Mayag , Jamal Atif\",\"doi\":\"10.1007/s40070-017-0070-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conditional preference networks (CP-nets) provide a compact and intuitive graphical tool to represent the preferences of a user. However, learning such a structure is known to be a difficult problem due to its combinatorial nature. We propose, in this paper, a new, efficient, and robust query-based learning algorithm for acyclic CP-nets. In particular, our algorithm takes into account the contradictions between multiple users’ preferences by searching in a principled way the variables that affect the preferences. We provide complexity results of the algorithm, and demonstrate its efficiency through an empirical evaluation on synthetic and on real databases.</p></div>\",\"PeriodicalId\":44104,\"journal\":{\"name\":\"EURO Journal on Decision Processes\",\"volume\":\"6 1\",\"pages\":\"Pages 39-59\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40070-017-0070-3\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Decision Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2193943821000790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Decision Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2193943821000790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
Query-based learning of acyclic conditional preference networks from contradictory preferences
Conditional preference networks (CP-nets) provide a compact and intuitive graphical tool to represent the preferences of a user. However, learning such a structure is known to be a difficult problem due to its combinatorial nature. We propose, in this paper, a new, efficient, and robust query-based learning algorithm for acyclic CP-nets. In particular, our algorithm takes into account the contradictions between multiple users’ preferences by searching in a principled way the variables that affect the preferences. We provide complexity results of the algorithm, and demonstrate its efficiency through an empirical evaluation on synthetic and on real databases.