综述:天然超疏水表面及其应用

Mengru Jin, Q. Xing, Zikang Chen
{"title":"综述:天然超疏水表面及其应用","authors":"Mengru Jin, Q. Xing, Zikang Chen","doi":"10.4236/jbnb.2020.112008","DOIUrl":null,"url":null,"abstract":"As the mimic biology becomes more and more important in the field of technology, superhydrophobic materials in the natural world have also become common. Superhydrophobic surfaces are used to prevent water droplets from wetting themselves which contain the micro- and nano-structures named hierarchical surfaces and exhibit the high water contact angles (WCA) that are greater than 150˚ and perfect application foreground in both our daily lives and industry. In this work, we first discuss several surface properties and their numerical models. And then we list the surface properties of a variety of natural superhydrophobic surfaces and sum up their similarities and differences. The most recent strategies of how to apply natural superhydrophobic surfaces are also introduced within the past several years. In addition, we talk about the limitations of the current generation of superhydrophobic surfaces and prospects which looks for solutions to the problems. This review aims to enable researchers to learn more about the principles and mechanisms of superhydrophobicity and perceive the new methods for creating and modifying it.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"11 1","pages":"110-149"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Review: Natural Superhydrophobic Surfaces and Applications\",\"authors\":\"Mengru Jin, Q. Xing, Zikang Chen\",\"doi\":\"10.4236/jbnb.2020.112008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the mimic biology becomes more and more important in the field of technology, superhydrophobic materials in the natural world have also become common. Superhydrophobic surfaces are used to prevent water droplets from wetting themselves which contain the micro- and nano-structures named hierarchical surfaces and exhibit the high water contact angles (WCA) that are greater than 150˚ and perfect application foreground in both our daily lives and industry. In this work, we first discuss several surface properties and their numerical models. And then we list the surface properties of a variety of natural superhydrophobic surfaces and sum up their similarities and differences. The most recent strategies of how to apply natural superhydrophobic surfaces are also introduced within the past several years. In addition, we talk about the limitations of the current generation of superhydrophobic surfaces and prospects which looks for solutions to the problems. This review aims to enable researchers to learn more about the principles and mechanisms of superhydrophobicity and perceive the new methods for creating and modifying it.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":\"11 1\",\"pages\":\"110-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/jbnb.2020.112008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jbnb.2020.112008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着模拟生物学在技术领域的地位越来越重要,超疏水材料在自然界中也越来越普遍。超疏水表面是一种用于防止水滴自湿的微纳米结构,具有大于150˚的高水接触角(WCA),在我们的日常生活和工业中都有很好的应用前景。在这项工作中,我们首先讨论了几种表面性质及其数值模型。然后,我们列出了各种天然超疏水表面的表面性质,并总结了它们的异同。在过去的几年中,也介绍了如何应用天然超疏水表面的最新策略。此外,我们还讨论了当前一代超疏水表面的局限性和寻找解决问题的前景。本文旨在进一步了解超疏水性的原理和机理,并探索建立和修饰超疏水性的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review: Natural Superhydrophobic Surfaces and Applications
As the mimic biology becomes more and more important in the field of technology, superhydrophobic materials in the natural world have also become common. Superhydrophobic surfaces are used to prevent water droplets from wetting themselves which contain the micro- and nano-structures named hierarchical surfaces and exhibit the high water contact angles (WCA) that are greater than 150˚ and perfect application foreground in both our daily lives and industry. In this work, we first discuss several surface properties and their numerical models. And then we list the surface properties of a variety of natural superhydrophobic surfaces and sum up their similarities and differences. The most recent strategies of how to apply natural superhydrophobic surfaces are also introduced within the past several years. In addition, we talk about the limitations of the current generation of superhydrophobic surfaces and prospects which looks for solutions to the problems. This review aims to enable researchers to learn more about the principles and mechanisms of superhydrophobicity and perceive the new methods for creating and modifying it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
317
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信