高岭石碱活化生成金属氧化物基羟基碳酸钙

IF 0.5 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
Chemija Pub Date : 2020-07-19 DOI:10.6001/chemija.v31i3.4286
E. AlShamaileh, M. Esaifan, Qusay Abu-Afifeh
{"title":"高岭石碱活化生成金属氧化物基羟基碳酸钙","authors":"E. AlShamaileh, M. Esaifan, Qusay Abu-Afifeh","doi":"10.6001/chemija.v31i3.4286","DOIUrl":null,"url":null,"abstract":"2 Department of Chemistry, Faculty of Science and Arts, University of Petra, Amman, Jordan The formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite is studied using X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. Different metal oxides (CoO, MgO, FeO and SiO2) were used to form the metal oxide-based hydroxysodalite. The transformation from kaolinite into hydroxysodalite is confirmed by XRD. In the thermodynamic study, the maximum peak temperatures for DSC curves at various heating rates were used to determine the activation energy (Ea) of the hydroxysodalite formation. With magnesium oxide and cobalt oxide, the formation process was found to be exothermic while it was endothermic with iron oxide.","PeriodicalId":9720,"journal":{"name":"Chemija","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite\",\"authors\":\"E. AlShamaileh, M. Esaifan, Qusay Abu-Afifeh\",\"doi\":\"10.6001/chemija.v31i3.4286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2 Department of Chemistry, Faculty of Science and Arts, University of Petra, Amman, Jordan The formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite is studied using X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. Different metal oxides (CoO, MgO, FeO and SiO2) were used to form the metal oxide-based hydroxysodalite. The transformation from kaolinite into hydroxysodalite is confirmed by XRD. In the thermodynamic study, the maximum peak temperatures for DSC curves at various heating rates were used to determine the activation energy (Ea) of the hydroxysodalite formation. With magnesium oxide and cobalt oxide, the formation process was found to be exothermic while it was endothermic with iron oxide.\",\"PeriodicalId\":9720,\"journal\":{\"name\":\"Chemija\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemija\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.6001/chemija.v31i3.4286\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemija","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.6001/chemija.v31i3.4286","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用x射线衍射(XRD)和差示扫描量热法(DSC)研究了高岭石碱活化生成金属氧化物基羟基碳酸钙的方法。采用不同的金属氧化物(CoO、MgO、FeO和SiO2)制备金属氧化物基羟基钠石。XRD证实了高岭石向羟基碳酸钙的转变。在热力学研究中,采用不同升温速率下DSC曲线的最高峰温度来确定羟基钠石形成的活化能(Ea)。氧化镁和氧化钴的形成过程是放热的,而氧化铁的形成过程是吸热的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite
2 Department of Chemistry, Faculty of Science and Arts, University of Petra, Amman, Jordan The formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite is studied using X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. Different metal oxides (CoO, MgO, FeO and SiO2) were used to form the metal oxide-based hydroxysodalite. The transformation from kaolinite into hydroxysodalite is confirmed by XRD. In the thermodynamic study, the maximum peak temperatures for DSC curves at various heating rates were used to determine the activation energy (Ea) of the hydroxysodalite formation. With magnesium oxide and cobalt oxide, the formation process was found to be exothermic while it was endothermic with iron oxide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemija
Chemija 化学-化学综合
CiteScore
1.30
自引率
16.70%
发文量
14
审稿时长
>12 weeks
期刊介绍: Chemija publishes original research articles and reviews from all branches of modern chemistry, including physical, inorganic, analytical, organic, polymer chemistry, electrochemistry, and multidisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信