绿色创新配方中的光调制流变特性

Q1 Arts and Humanities
Duccio Tatini, M. Raudino, Filippo Sarri
{"title":"绿色创新配方中的光调制流变特性","authors":"Duccio Tatini, M. Raudino, Filippo Sarri","doi":"10.36253/substantia-1736","DOIUrl":null,"url":null,"abstract":"The addition of azorubine to a viscoelastic aqueous dispersion of sodium oleate (NaOL, 0.43 M, 13% w/w) and KCl (up to 4% w/w) leads to a green gel-like system whose rheological behavior can be efficiently and reversibly triggered from remote by using UV light. Rheology, Differential Scanning Calorimetry (DSC) measurements and phase behavior studies indicate that the original texture of the NaOL dispersion is significantly hardened upon UV irradiation for 8 hours in the presence of azorubine, showing a seven hundred-fold increase in viscosity. The UV treatment brings about the trans to cis isomerization of azorubine, which modifies the structure of the NaOL wormlike micellar system, leading to a more entangled, close-textured network. The cooperative effect of KCl on the fluid viscosity is found to be concentration-dependent. The system slowly reverts to its original rheological behaviour after standing for about 1 day. These results are relevant for the development of stimuli-responsive innovative systems based on biocompatible, non expensive and commercially available materials that can be used in a wide range of applications, such as in drug delivery or enhanced oil recovery, where a quick change in the physico-chemical features of the system is required but difficult to be performed.","PeriodicalId":32750,"journal":{"name":"Substantia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-Modulated Rheological Properties in Green Innovative Formulations\",\"authors\":\"Duccio Tatini, M. Raudino, Filippo Sarri\",\"doi\":\"10.36253/substantia-1736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The addition of azorubine to a viscoelastic aqueous dispersion of sodium oleate (NaOL, 0.43 M, 13% w/w) and KCl (up to 4% w/w) leads to a green gel-like system whose rheological behavior can be efficiently and reversibly triggered from remote by using UV light. Rheology, Differential Scanning Calorimetry (DSC) measurements and phase behavior studies indicate that the original texture of the NaOL dispersion is significantly hardened upon UV irradiation for 8 hours in the presence of azorubine, showing a seven hundred-fold increase in viscosity. The UV treatment brings about the trans to cis isomerization of azorubine, which modifies the structure of the NaOL wormlike micellar system, leading to a more entangled, close-textured network. The cooperative effect of KCl on the fluid viscosity is found to be concentration-dependent. The system slowly reverts to its original rheological behaviour after standing for about 1 day. These results are relevant for the development of stimuli-responsive innovative systems based on biocompatible, non expensive and commercially available materials that can be used in a wide range of applications, such as in drug delivery or enhanced oil recovery, where a quick change in the physico-chemical features of the system is required but difficult to be performed.\",\"PeriodicalId\":32750,\"journal\":{\"name\":\"Substantia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Substantia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36253/substantia-1736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Substantia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/substantia-1736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

向油酸钠(NaOL,0.43M,13%w/w)和KCl(高达4%w/w)的粘弹性水性分散体中加入偶氮红素可产生绿色凝胶状体系,其流变行为可通过使用紫外线从远处有效且可逆地触发。流变学、差示扫描量热法(DSC)测量和相行为研究表明,NaOL分散体的原始结构在偶氮红存在下紫外线照射8小时后显著硬化,显示粘度增加了700倍。紫外线处理导致了偶氮红的反式到顺式异构化,这改变了NaOL蠕虫状胶束系统的结构,导致了更纠缠、更紧密的纹理网络。KCl对流体粘度的协同作用与浓度有关。该系统在静置约1天后慢慢恢复到其原始流变行为。这些结果与开发基于生物相容性、非昂贵和商业可用材料的刺激响应性创新系统有关,这些材料可用于广泛的应用,如药物递送或提高采油效率,在这些应用中,系统的物理化学特征需要快速改变,但很难实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Light-Modulated Rheological Properties in Green Innovative Formulations
The addition of azorubine to a viscoelastic aqueous dispersion of sodium oleate (NaOL, 0.43 M, 13% w/w) and KCl (up to 4% w/w) leads to a green gel-like system whose rheological behavior can be efficiently and reversibly triggered from remote by using UV light. Rheology, Differential Scanning Calorimetry (DSC) measurements and phase behavior studies indicate that the original texture of the NaOL dispersion is significantly hardened upon UV irradiation for 8 hours in the presence of azorubine, showing a seven hundred-fold increase in viscosity. The UV treatment brings about the trans to cis isomerization of azorubine, which modifies the structure of the NaOL wormlike micellar system, leading to a more entangled, close-textured network. The cooperative effect of KCl on the fluid viscosity is found to be concentration-dependent. The system slowly reverts to its original rheological behaviour after standing for about 1 day. These results are relevant for the development of stimuli-responsive innovative systems based on biocompatible, non expensive and commercially available materials that can be used in a wide range of applications, such as in drug delivery or enhanced oil recovery, where a quick change in the physico-chemical features of the system is required but difficult to be performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Substantia
Substantia Arts and Humanities-History
CiteScore
1.10
自引率
0.00%
发文量
18
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信