完全图的循环拟阵的平面大小

Q4 Mathematics
Christo Kriel, E. Mphako-Banda
{"title":"完全图的循环拟阵的平面大小","authors":"Christo Kriel, E. Mphako-Banda","doi":"10.15446/recolma.v56n1.105617","DOIUrl":null,"url":null,"abstract":"We show that the problem of counting the number of flats of size k for a cycle matroid of a complete graph is equivalent to the problem of counting the number of partitions of an integer k into triangular numbers. In addition, we give some values of k such that there is no flat of size k in a cycle matroid of a complete graph of order k. Finally, we give a minimum bound for the number of values, k, for which there are no flats of size k in the given cycle matroid.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sizes of flats of cycle matroids of complete graphs\",\"authors\":\"Christo Kriel, E. Mphako-Banda\",\"doi\":\"10.15446/recolma.v56n1.105617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the problem of counting the number of flats of size k for a cycle matroid of a complete graph is equivalent to the problem of counting the number of partitions of an integer k into triangular numbers. In addition, we give some values of k such that there is no flat of size k in a cycle matroid of a complete graph of order k. Finally, we give a minimum bound for the number of values, k, for which there are no flats of size k in the given cycle matroid.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v56n1.105617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v56n1.105617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了计算完全图的循环矩阵中大小为k的平面的数目的问题等价于计算整数k划分为三角形数的数目的问题。此外,我们给出了k的一些值,使得k阶完全图的循环矩阵中不存在大小为k的平面。最后,我们给出了在给定的循环矩阵中不存在大小为k的平面的k个数的最小界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sizes of flats of cycle matroids of complete graphs
We show that the problem of counting the number of flats of size k for a cycle matroid of a complete graph is equivalent to the problem of counting the number of partitions of an integer k into triangular numbers. In addition, we give some values of k such that there is no flat of size k in a cycle matroid of a complete graph of order k. Finally, we give a minimum bound for the number of values, k, for which there are no flats of size k in the given cycle matroid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信