{"title":"完全图的循环拟阵的平面大小","authors":"Christo Kriel, E. Mphako-Banda","doi":"10.15446/recolma.v56n1.105617","DOIUrl":null,"url":null,"abstract":"We show that the problem of counting the number of flats of size k for a cycle matroid of a complete graph is equivalent to the problem of counting the number of partitions of an integer k into triangular numbers. In addition, we give some values of k such that there is no flat of size k in a cycle matroid of a complete graph of order k. Finally, we give a minimum bound for the number of values, k, for which there are no flats of size k in the given cycle matroid.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sizes of flats of cycle matroids of complete graphs\",\"authors\":\"Christo Kriel, E. Mphako-Banda\",\"doi\":\"10.15446/recolma.v56n1.105617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the problem of counting the number of flats of size k for a cycle matroid of a complete graph is equivalent to the problem of counting the number of partitions of an integer k into triangular numbers. In addition, we give some values of k such that there is no flat of size k in a cycle matroid of a complete graph of order k. Finally, we give a minimum bound for the number of values, k, for which there are no flats of size k in the given cycle matroid.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v56n1.105617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v56n1.105617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Sizes of flats of cycle matroids of complete graphs
We show that the problem of counting the number of flats of size k for a cycle matroid of a complete graph is equivalent to the problem of counting the number of partitions of an integer k into triangular numbers. In addition, we give some values of k such that there is no flat of size k in a cycle matroid of a complete graph of order k. Finally, we give a minimum bound for the number of values, k, for which there are no flats of size k in the given cycle matroid.