{"title":"关于一些二元高斯-魏尔斯特拉斯算子","authors":"G. Krech, Ireneusz Krech","doi":"10.33205/CMA.518582","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to investigate the approximation properties of bivariate generalization of Gauss-Weierstrass operators associated with the Riemann-Liouville operator. In particular, the approximation error will be estimated by these operators in the space of functions defined and continuous in the half-plane $(0, \\infty) \\times \\mathbb{R}$, and bounded by certain exponential functions.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Some Bivariate Gauss-Weierstrass Operators\",\"authors\":\"G. Krech, Ireneusz Krech\",\"doi\":\"10.33205/CMA.518582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the paper is to investigate the approximation properties of bivariate generalization of Gauss-Weierstrass operators associated with the Riemann-Liouville operator. In particular, the approximation error will be estimated by these operators in the space of functions defined and continuous in the half-plane $(0, \\\\infty) \\\\times \\\\mathbb{R}$, and bounded by certain exponential functions.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/CMA.518582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/CMA.518582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The aim of the paper is to investigate the approximation properties of bivariate generalization of Gauss-Weierstrass operators associated with the Riemann-Liouville operator. In particular, the approximation error will be estimated by these operators in the space of functions defined and continuous in the half-plane $(0, \infty) \times \mathbb{R}$, and bounded by certain exponential functions.