具有可加性lsamvy噪声的随机热方程的极值

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Carsten Chong, P. Kevei
{"title":"具有可加性lsamvy噪声的随机热方程的极值","authors":"Carsten Chong, P. Kevei","doi":"10.1214/22-ejp855","DOIUrl":null,"url":null,"abstract":"We analyze the spatial asymptotic properties of the solution to the stochastic heat equation driven by an additive Lévy space-time white noise. For fixed time t > 0 and space x ∈ R we determine the exact tail behavior of the solution both for light-tailed and for heavy-tailed Lévy jump measures. Based on these asymptotics we determine for any fixed time t > 0 the almost-sure growth rate of the solution as |x| → ∞. MSC2020 subject classifications: Primary: 60H15; 60F15; 60G70; secondary: 60G17, 60G51.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extremes of the stochastic heat equation with additive Lévy noise\",\"authors\":\"Carsten Chong, P. Kevei\",\"doi\":\"10.1214/22-ejp855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the spatial asymptotic properties of the solution to the stochastic heat equation driven by an additive Lévy space-time white noise. For fixed time t > 0 and space x ∈ R we determine the exact tail behavior of the solution both for light-tailed and for heavy-tailed Lévy jump measures. Based on these asymptotics we determine for any fixed time t > 0 the almost-sure growth rate of the solution as |x| → ∞. MSC2020 subject classifications: Primary: 60H15; 60F15; 60G70; secondary: 60G17, 60G51.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejp855\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp855","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

研究了加性时空白噪声驱动下随机热方程解的空间渐近性质。对于固定的时间t > 0和空间x∈R,我们确定了轻尾和重尾lsamvy跳跃措施解的确切尾部行为。基于这些渐近性,我们确定了对于任意固定时间t > 0,解的几乎确定增长率为|x|→∞。MSC2020学科分类:初级:60H15;60 f15;60 g70;次级:60G17、60G51。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremes of the stochastic heat equation with additive Lévy noise
We analyze the spatial asymptotic properties of the solution to the stochastic heat equation driven by an additive Lévy space-time white noise. For fixed time t > 0 and space x ∈ R we determine the exact tail behavior of the solution both for light-tailed and for heavy-tailed Lévy jump measures. Based on these asymptotics we determine for any fixed time t > 0 the almost-sure growth rate of the solution as |x| → ∞. MSC2020 subject classifications: Primary: 60H15; 60F15; 60G70; secondary: 60G17, 60G51.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信