各向异性Cheeger常数的各向异性优化

Pub Date : 2022-06-15 DOI:10.4153/S0008439523000152
E. Parini, Giorgio Saracco
{"title":"各向异性Cheeger常数的各向异性优化","authors":"E. Parini, Giorgio Saracco","doi":"10.4153/S0008439523000152","DOIUrl":null,"url":null,"abstract":"Abstract Given an open, bounded set \n$\\Omega $\n in \n$\\mathbb {R}^N$\n , we consider the minimization of the anisotropic Cheeger constant \n$h_K(\\Omega )$\n with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if \n$\\Omega $\n is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the anisotropic Cheeger constant with respect to the anisotropy\",\"authors\":\"E. Parini, Giorgio Saracco\",\"doi\":\"10.4153/S0008439523000152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given an open, bounded set \\n$\\\\Omega $\\n in \\n$\\\\mathbb {R}^N$\\n , we consider the minimization of the anisotropic Cheeger constant \\n$h_K(\\\\Omega )$\\n with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if \\n$\\\\Omega $\\n is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S0008439523000152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439523000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要给定$\mathbb{R}^N$中的一个开放有界集$\Omega$,我们考虑在相关单位球上的体积约束下,各向异性Cheeger常数$h_K(\Omega)$相对于各向异性K的最小化。在平面情况下,假设K是一个凸的中心对称体,我们证明了极小值的存在性。此外,如果$\Omega$是球,我们证明了最佳各向异性K不是球,并且在所有正多边形中,正方形提供了最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimization of the anisotropic Cheeger constant with respect to the anisotropy
Abstract Given an open, bounded set $\Omega $ in $\mathbb {R}^N$ , we consider the minimization of the anisotropic Cheeger constant $h_K(\Omega )$ with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if $\Omega $ is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信