基于酿酒酵母和主成分分析的硫胺素安培生物传感器鉴定与分类

L. Umar, V. A. Rosandi, Leonardus Riski Nainggolan, R. N. Setiadi, T. Linda
{"title":"基于酿酒酵母和主成分分析的硫胺素安培生物传感器鉴定与分类","authors":"L. Umar, V. A. Rosandi, Leonardus Riski Nainggolan, R. N. Setiadi, T. Linda","doi":"10.26418/positron.v13i1.59432","DOIUrl":null,"url":null,"abstract":"Vitamin B1 (thiamine) plays an important role in various metabolic processes and is one of the main factors in the body's health. Thiamine excess and deficiency in the body might cause a variety of diseases such as shortness of breath, beriberi, and heart failure, hence thiamine levels must be detected as a reference for intake. The present research detected thiamine using the amperometric biosensor method and the yeast Saccharomyces cerevisiae as a bioreceptor. Dissolved oxygen (DO) level measurement parameters are considered based on yeast cell metabolism. Thiamine was treated with various concentrations of 15 mM, 30 mM, 45 mM, 60 mM, and 75 mM. The measurement results are in the voltage range of 1912–1964 mV, where the addition of thiamine causes an increase in the reproducibility and growth rate of yeast cells. The ideal characteristics of the biosensor based on the parameters of sensitivity, linearity, and stability was also carried out, which resulted in successive biosensor measurements of 0.925 mV/mM, a correlation coefficient of r = 0.9868, and a decrease in the voltage response of the biosensor up to 4.97% from its initial activity. The measured data were grouped and classified using principal component analysis (PCA), which resulted in a total accumulated data variance percentage of 84.5% and an eigenvalue > 1 for both PCs. It is intended that the findings of this research can be utilized as a reference for controlling vitamin consumption levels that have an impact on health.","PeriodicalId":31789,"journal":{"name":"Positron","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification and Classification of Thiamine with Amperometric Biosensor Based on Saccharomyces cerevisiae and Principal Component Analysis\",\"authors\":\"L. Umar, V. A. Rosandi, Leonardus Riski Nainggolan, R. N. Setiadi, T. Linda\",\"doi\":\"10.26418/positron.v13i1.59432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vitamin B1 (thiamine) plays an important role in various metabolic processes and is one of the main factors in the body's health. Thiamine excess and deficiency in the body might cause a variety of diseases such as shortness of breath, beriberi, and heart failure, hence thiamine levels must be detected as a reference for intake. The present research detected thiamine using the amperometric biosensor method and the yeast Saccharomyces cerevisiae as a bioreceptor. Dissolved oxygen (DO) level measurement parameters are considered based on yeast cell metabolism. Thiamine was treated with various concentrations of 15 mM, 30 mM, 45 mM, 60 mM, and 75 mM. The measurement results are in the voltage range of 1912–1964 mV, where the addition of thiamine causes an increase in the reproducibility and growth rate of yeast cells. The ideal characteristics of the biosensor based on the parameters of sensitivity, linearity, and stability was also carried out, which resulted in successive biosensor measurements of 0.925 mV/mM, a correlation coefficient of r = 0.9868, and a decrease in the voltage response of the biosensor up to 4.97% from its initial activity. The measured data were grouped and classified using principal component analysis (PCA), which resulted in a total accumulated data variance percentage of 84.5% and an eigenvalue > 1 for both PCs. It is intended that the findings of this research can be utilized as a reference for controlling vitamin consumption levels that have an impact on health.\",\"PeriodicalId\":31789,\"journal\":{\"name\":\"Positron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/positron.v13i1.59432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/positron.v13i1.59432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

维生素B1(硫胺素)在各种代谢过程中起着重要作用,是人体健康的主要因素之一。体内硫胺素的过量和缺乏可能导致多种疾病,如呼吸短促、脚气和心力衰竭,因此必须检测硫胺素水平作为摄入的参考。本研究以酿酒酵母为生物受体,采用安培生物传感器法检测硫胺素。溶解氧(DO)水平的测量参数是基于酵母细胞代谢考虑的。硫胺素用15mm、30mm、45mm、60mm和75mm的不同浓度处理,测量结果在1912-1964 mV的电压范围内,其中硫胺素的加入使酵母细胞的可重复性和生长速度增加。基于灵敏度、线性度和稳定性等参数,生物传感器的理想特性得到了0.925 mV/mM的连续测量值,相关系数r = 0.9868,生物传感器的电压响应比初始活性降低了4.97%。利用主成分分析(PCA)对实测数据进行分组和分类,得到两台pc的总累积数据方差百分比为84.5%,特征值为> 1。本研究的结果可作为控制对健康有影响的维生素摄入水平的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and Classification of Thiamine with Amperometric Biosensor Based on Saccharomyces cerevisiae and Principal Component Analysis
Vitamin B1 (thiamine) plays an important role in various metabolic processes and is one of the main factors in the body's health. Thiamine excess and deficiency in the body might cause a variety of diseases such as shortness of breath, beriberi, and heart failure, hence thiamine levels must be detected as a reference for intake. The present research detected thiamine using the amperometric biosensor method and the yeast Saccharomyces cerevisiae as a bioreceptor. Dissolved oxygen (DO) level measurement parameters are considered based on yeast cell metabolism. Thiamine was treated with various concentrations of 15 mM, 30 mM, 45 mM, 60 mM, and 75 mM. The measurement results are in the voltage range of 1912–1964 mV, where the addition of thiamine causes an increase in the reproducibility and growth rate of yeast cells. The ideal characteristics of the biosensor based on the parameters of sensitivity, linearity, and stability was also carried out, which resulted in successive biosensor measurements of 0.925 mV/mM, a correlation coefficient of r = 0.9868, and a decrease in the voltage response of the biosensor up to 4.97% from its initial activity. The measured data were grouped and classified using principal component analysis (PCA), which resulted in a total accumulated data variance percentage of 84.5% and an eigenvalue > 1 for both PCs. It is intended that the findings of this research can be utilized as a reference for controlling vitamin consumption levels that have an impact on health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信