{"title":"基于深度测序的褐家鼠高强度间歇游泳训练脑mirna全基因组鉴定","authors":"Yanhong Zhao, Anmin Zhang, Yanfang Wang, Shuping Hu, Ruiping Zhang, Shuaiwei Qian","doi":"10.1186/s12867-019-0120-4","DOIUrl":null,"url":null,"abstract":"<p>Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain.</p><p>We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as <i>Bdnf</i>, <i>Igf</i>-<i>1</i>, <i>Vgf</i>, <i>Ngf c</i>-<i>Fos,</i> and <i>Ntf3</i> etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets.</p><p>This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"20 1","pages":""},"PeriodicalIF":2.9460,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-019-0120-4","citationCount":"5","resultStr":"{\"title\":\"Genome-wide identification of brain miRNAs in response to high-intensity intermittent swimming training in Rattus norvegicus by deep sequencing\",\"authors\":\"Yanhong Zhao, Anmin Zhang, Yanfang Wang, Shuping Hu, Ruiping Zhang, Shuaiwei Qian\",\"doi\":\"10.1186/s12867-019-0120-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain.</p><p>We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as <i>Bdnf</i>, <i>Igf</i>-<i>1</i>, <i>Vgf</i>, <i>Ngf c</i>-<i>Fos,</i> and <i>Ntf3</i> etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets.</p><p>This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise.</p>\",\"PeriodicalId\":497,\"journal\":{\"name\":\"BMC Molecular Biology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9460,\"publicationDate\":\"2019-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12867-019-0120-4\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12867-019-0120-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s12867-019-0120-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Genome-wide identification of brain miRNAs in response to high-intensity intermittent swimming training in Rattus norvegicus by deep sequencing
Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain.
We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as Bdnf, Igf-1, Vgf, Ngf c-Fos, and Ntf3 etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets.
This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise.
期刊介绍:
BMC Molecular Biology is an open access journal publishing original peer-reviewed research articles in all aspects of DNA and RNA in a cellular context, encompassing investigations of chromatin, replication, recombination, mutation, repair, transcription, translation and RNA processing and function.