{"title":"cp -半群与膨胀,子积系统与超积系统:多参数情况及其他","authors":"O. Shalit, Michael Skeide","doi":"10.4064/dm823-5-2022","DOIUrl":null,"url":null,"abstract":"These notes are the output of a decade of research on how the results about dilations of one-parameter CP-semigroups with the help of product systems, can be put forward to d-parameter semigroups - and beyond. While preliminary work on the two- and d-parameter case is based on the approach via the Arveson-Stinespring correspondence of a CP-map by Muhly and Solel (and limited to von Neumann algebras), here we explore consequently the approach via Paschke's GNS-correspondence of a CP-map by Bhat and Skeide. (A comparison is postponed to Appendix A(iv).) \nThe generalizations are multi-fold, the difficulties often enormous. In fact, our only true if-and-only-if theorem, is the following: A Markov semigroup over (the opposite of) an Ore monoid admits a full (strict or normal) dilation if and only if its GNS-subproduct system embeds into a product system. Already earlier, it has been observed that the GNS- (respectively, the Arveson-Stinespring) correspondences form a subproduct system, and that the main difficulty is to embed that into a product system. Here we add, that every dilation comes along with a superproduct system (a product system if the dilation is full). The latter may or may not contain the GNS-subproduct system; it does, if the dilation is strong - but not only. \nApart from the many positive results pushing forward the theory to large extent, we provide plenty of counter examples for almost every desirable statement we could not prove. Still, a small number of open problems remains. The most prominent: Does there exist a CP-semigroup that admits a dilation, but no strong dilation? Another one: Does there exist a Markov semigroup that admits a (necessarily strong) dilation, but no full dilation?","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"CP-semigroups and dilations, subproduct systems and superproduct systems: the multi-parameter case and beyond\",\"authors\":\"O. Shalit, Michael Skeide\",\"doi\":\"10.4064/dm823-5-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These notes are the output of a decade of research on how the results about dilations of one-parameter CP-semigroups with the help of product systems, can be put forward to d-parameter semigroups - and beyond. While preliminary work on the two- and d-parameter case is based on the approach via the Arveson-Stinespring correspondence of a CP-map by Muhly and Solel (and limited to von Neumann algebras), here we explore consequently the approach via Paschke's GNS-correspondence of a CP-map by Bhat and Skeide. (A comparison is postponed to Appendix A(iv).) \\nThe generalizations are multi-fold, the difficulties often enormous. In fact, our only true if-and-only-if theorem, is the following: A Markov semigroup over (the opposite of) an Ore monoid admits a full (strict or normal) dilation if and only if its GNS-subproduct system embeds into a product system. Already earlier, it has been observed that the GNS- (respectively, the Arveson-Stinespring) correspondences form a subproduct system, and that the main difficulty is to embed that into a product system. Here we add, that every dilation comes along with a superproduct system (a product system if the dilation is full). The latter may or may not contain the GNS-subproduct system; it does, if the dilation is strong - but not only. \\nApart from the many positive results pushing forward the theory to large extent, we provide plenty of counter examples for almost every desirable statement we could not prove. Still, a small number of open problems remains. The most prominent: Does there exist a CP-semigroup that admits a dilation, but no strong dilation? Another one: Does there exist a Markov semigroup that admits a (necessarily strong) dilation, but no full dilation?\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm823-5-2022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm823-5-2022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CP-semigroups and dilations, subproduct systems and superproduct systems: the multi-parameter case and beyond
These notes are the output of a decade of research on how the results about dilations of one-parameter CP-semigroups with the help of product systems, can be put forward to d-parameter semigroups - and beyond. While preliminary work on the two- and d-parameter case is based on the approach via the Arveson-Stinespring correspondence of a CP-map by Muhly and Solel (and limited to von Neumann algebras), here we explore consequently the approach via Paschke's GNS-correspondence of a CP-map by Bhat and Skeide. (A comparison is postponed to Appendix A(iv).)
The generalizations are multi-fold, the difficulties often enormous. In fact, our only true if-and-only-if theorem, is the following: A Markov semigroup over (the opposite of) an Ore monoid admits a full (strict or normal) dilation if and only if its GNS-subproduct system embeds into a product system. Already earlier, it has been observed that the GNS- (respectively, the Arveson-Stinespring) correspondences form a subproduct system, and that the main difficulty is to embed that into a product system. Here we add, that every dilation comes along with a superproduct system (a product system if the dilation is full). The latter may or may not contain the GNS-subproduct system; it does, if the dilation is strong - but not only.
Apart from the many positive results pushing forward the theory to large extent, we provide plenty of counter examples for almost every desirable statement we could not prove. Still, a small number of open problems remains. The most prominent: Does there exist a CP-semigroup that admits a dilation, but no strong dilation? Another one: Does there exist a Markov semigroup that admits a (necessarily strong) dilation, but no full dilation?
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.