Jundi Geng, Junzhe Liu, Jiali Yan, M. Ba, Z. He, Yushun Li
{"title":"钢筋碳化和氯化物腐蚀产物的化学成分","authors":"Jundi Geng, Junzhe Liu, Jiali Yan, M. Ba, Z. He, Yushun Li","doi":"10.1155/2018/7479383","DOIUrl":null,"url":null,"abstract":"The microstructures of steel bars were studied by X-ray photoelectron spectroscopy (XPS), and the mechanism of corrosion of steel bars under the corrosion factors was elucidated. The results show that the passivation film and corrosive surface of the steel surface in the solution of the chloride-containing salt were coarser and the surface state was denser. The main corrosion products are FeOOH and FeO. The surface of the steel immersed in the simulated carbonized solution had loose pores. The main components are FeOOH, Fe3O4, and Fe2O3. The surface of the steel bar has a large amount of yellowish brown corrosion products in the simulated carbonization and chloride salt. The surface of the corrosion products was stripped and the main components are FeOOH, Fe3O4, and FeCl3, where the content of FeOOH is as high as 60%. The peak value of iron is gradually increased from the simulated chloride salt solution to the carbonized solution to the combined effect of carbonation and chloride salt; the iron oxide content is increased and corrosion of steel is obviously serious.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/7479383","citationCount":"16","resultStr":"{\"title\":\"Chemical Composition of Corrosion Products of Rebar Caused by Carbonation and Chloride\",\"authors\":\"Jundi Geng, Junzhe Liu, Jiali Yan, M. Ba, Z. He, Yushun Li\",\"doi\":\"10.1155/2018/7479383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microstructures of steel bars were studied by X-ray photoelectron spectroscopy (XPS), and the mechanism of corrosion of steel bars under the corrosion factors was elucidated. The results show that the passivation film and corrosive surface of the steel surface in the solution of the chloride-containing salt were coarser and the surface state was denser. The main corrosion products are FeOOH and FeO. The surface of the steel immersed in the simulated carbonized solution had loose pores. The main components are FeOOH, Fe3O4, and Fe2O3. The surface of the steel bar has a large amount of yellowish brown corrosion products in the simulated carbonization and chloride salt. The surface of the corrosion products was stripped and the main components are FeOOH, Fe3O4, and FeCl3, where the content of FeOOH is as high as 60%. The peak value of iron is gradually increased from the simulated chloride salt solution to the carbonized solution to the combined effect of carbonation and chloride salt; the iron oxide content is increased and corrosion of steel is obviously serious.\",\"PeriodicalId\":13893,\"journal\":{\"name\":\"International Journal of Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/7479383\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/7479383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/7479383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Chemical Composition of Corrosion Products of Rebar Caused by Carbonation and Chloride
The microstructures of steel bars were studied by X-ray photoelectron spectroscopy (XPS), and the mechanism of corrosion of steel bars under the corrosion factors was elucidated. The results show that the passivation film and corrosive surface of the steel surface in the solution of the chloride-containing salt were coarser and the surface state was denser. The main corrosion products are FeOOH and FeO. The surface of the steel immersed in the simulated carbonized solution had loose pores. The main components are FeOOH, Fe3O4, and Fe2O3. The surface of the steel bar has a large amount of yellowish brown corrosion products in the simulated carbonization and chloride salt. The surface of the corrosion products was stripped and the main components are FeOOH, Fe3O4, and FeCl3, where the content of FeOOH is as high as 60%. The peak value of iron is gradually increased from the simulated chloride salt solution to the carbonized solution to the combined effect of carbonation and chloride salt; the iron oxide content is increased and corrosion of steel is obviously serious.