钢筋碳化和氯化物腐蚀产物的化学成分

IF 1.5 Q4 ELECTROCHEMISTRY
Jundi Geng, Junzhe Liu, Jiali Yan, M. Ba, Z. He, Yushun Li
{"title":"钢筋碳化和氯化物腐蚀产物的化学成分","authors":"Jundi Geng, Junzhe Liu, Jiali Yan, M. Ba, Z. He, Yushun Li","doi":"10.1155/2018/7479383","DOIUrl":null,"url":null,"abstract":"The microstructures of steel bars were studied by X-ray photoelectron spectroscopy (XPS), and the mechanism of corrosion of steel bars under the corrosion factors was elucidated. The results show that the passivation film and corrosive surface of the steel surface in the solution of the chloride-containing salt were coarser and the surface state was denser. The main corrosion products are FeOOH and FeO. The surface of the steel immersed in the simulated carbonized solution had loose pores. The main components are FeOOH, Fe3O4, and Fe2O3. The surface of the steel bar has a large amount of yellowish brown corrosion products in the simulated carbonization and chloride salt. The surface of the corrosion products was stripped and the main components are FeOOH, Fe3O4, and FeCl3, where the content of FeOOH is as high as 60%. The peak value of iron is gradually increased from the simulated chloride salt solution to the carbonized solution to the combined effect of carbonation and chloride salt; the iron oxide content is increased and corrosion of steel is obviously serious.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/7479383","citationCount":"16","resultStr":"{\"title\":\"Chemical Composition of Corrosion Products of Rebar Caused by Carbonation and Chloride\",\"authors\":\"Jundi Geng, Junzhe Liu, Jiali Yan, M. Ba, Z. He, Yushun Li\",\"doi\":\"10.1155/2018/7479383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microstructures of steel bars were studied by X-ray photoelectron spectroscopy (XPS), and the mechanism of corrosion of steel bars under the corrosion factors was elucidated. The results show that the passivation film and corrosive surface of the steel surface in the solution of the chloride-containing salt were coarser and the surface state was denser. The main corrosion products are FeOOH and FeO. The surface of the steel immersed in the simulated carbonized solution had loose pores. The main components are FeOOH, Fe3O4, and Fe2O3. The surface of the steel bar has a large amount of yellowish brown corrosion products in the simulated carbonization and chloride salt. The surface of the corrosion products was stripped and the main components are FeOOH, Fe3O4, and FeCl3, where the content of FeOOH is as high as 60%. The peak value of iron is gradually increased from the simulated chloride salt solution to the carbonized solution to the combined effect of carbonation and chloride salt; the iron oxide content is increased and corrosion of steel is obviously serious.\",\"PeriodicalId\":13893,\"journal\":{\"name\":\"International Journal of Corrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/7479383\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/7479383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/7479383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 16

摘要

利用X射线光电子能谱(XPS)对钢筋的微观结构进行了研究,阐明了腐蚀因素对钢筋腐蚀的机理。结果表明,在含氯化物的盐溶液中,钢表面的钝化膜和腐蚀表面较粗糙,表面状态较致密。主要腐蚀产物为FeOOH和FeO。浸泡在模拟碳化溶液中的钢表面具有疏松的孔隙。主要成分为FeOOH、Fe3O4和Fe2O3。钢筋表面在模拟碳化和氯化物盐中有大量黄褐色腐蚀产物。腐蚀产物的表面被剥离,主要成分为FeOOH、Fe3O4和FeCl3,其中FeOOH的含量高达60%。铁的峰值从模拟氯化物盐溶液逐渐增加到碳化溶液,这是碳酸化和氯化物盐的共同作用;氧化铁含量增加,钢的腐蚀明显严重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Composition of Corrosion Products of Rebar Caused by Carbonation and Chloride
The microstructures of steel bars were studied by X-ray photoelectron spectroscopy (XPS), and the mechanism of corrosion of steel bars under the corrosion factors was elucidated. The results show that the passivation film and corrosive surface of the steel surface in the solution of the chloride-containing salt were coarser and the surface state was denser. The main corrosion products are FeOOH and FeO. The surface of the steel immersed in the simulated carbonized solution had loose pores. The main components are FeOOH, Fe3O4, and Fe2O3. The surface of the steel bar has a large amount of yellowish brown corrosion products in the simulated carbonization and chloride salt. The surface of the corrosion products was stripped and the main components are FeOOH, Fe3O4, and FeCl3, where the content of FeOOH is as high as 60%. The peak value of iron is gradually increased from the simulated chloride salt solution to the carbonized solution to the combined effect of carbonation and chloride salt; the iron oxide content is increased and corrosion of steel is obviously serious.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
8
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信