退化变指数椭圆方程解的先验界和Hölder连续性

IF 0.7 4区 数学 Q2 MATHEMATICS
Ky Ho, L. Nhan, L. Truong
{"title":"退化变指数椭圆方程解的先验界和Hölder连续性","authors":"Ky Ho, L. Nhan, L. Truong","doi":"10.12775/tmna.2022.021","DOIUrl":null,"url":null,"abstract":"We investigate the boundedness and regularity of solutions to degenerate elliptic equations with variable exponents that are subject to the Dirichlet boundary condition. \nBy employing the De Giorgi iteration, we obtain a-priori bounds and the Hölder continuity for solutions. \nAs an application, we obtain the existence of infinitely many small solutions for a class of degenerate elliptic equations involving variable exponents.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A-priori bound and Hölder continuity of solutions to degenerate elliptic equations with variable exponents\",\"authors\":\"Ky Ho, L. Nhan, L. Truong\",\"doi\":\"10.12775/tmna.2022.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the boundedness and regularity of solutions to degenerate elliptic equations with variable exponents that are subject to the Dirichlet boundary condition. \\nBy employing the De Giorgi iteration, we obtain a-priori bounds and the Hölder continuity for solutions. \\nAs an application, we obtain the existence of infinitely many small solutions for a class of degenerate elliptic equations involving variable exponents.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了易指数退化椭圆型方程在Dirichlet边界条件下解的有界性和正则性。利用De Giorgi迭代,得到了解的先验界和Hölder连续性。作为一个应用,我们得到了一类变指数退化椭圆型方程无穷小解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A-priori bound and Hölder continuity of solutions to degenerate elliptic equations with variable exponents
We investigate the boundedness and regularity of solutions to degenerate elliptic equations with variable exponents that are subject to the Dirichlet boundary condition. By employing the De Giorgi iteration, we obtain a-priori bounds and the Hölder continuity for solutions. As an application, we obtain the existence of infinitely many small solutions for a class of degenerate elliptic equations involving variable exponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信