{"title":"基于CNN的jpeg2000语义图像压缩","authors":"Anish Nagarsenker, P. Khandekar, Minal Deshmukh","doi":"10.32985/ijeces.14.5.4","DOIUrl":null,"url":null,"abstract":"Some of the computer vision applications such as understanding, recognition as well as image processing are some areas where AI techniques like convolutional neural network (CNN) have attained great success. AI techniques are not very frequently used in applications like image compression which are a part of low-level vision applications. Intensifying the visual quality of the lossy video/image compression has been a huge obstacle for a very long time. Image processing tasks and image recognition can be addressed with the application of deep learning CNNs as a result of the availability of large training datasets and the recent advances in computing power. This paper consists of a CNN-based novel compression framework comprising of Compact CNN (ComCNN) and Reconstruction CNN (RecCNN) where they are trained concurrently and ideally consolidated into a compression framework, along with MS-ROI (Multi Structure-Region of Interest) mapping which highlights the semiotically notable portions of the image. The framework attains a mean PSNR value of 32.9dB, achieving a gain of 3.52dB and attains mean SSIM value of 0.9262, achieving a gain of 0.0723dB over the other methods when compared using the 6 main test images. Experimental results in the proposed study validate that the architecture substantially surpasses image compression frameworks, that utilized deblocking or denoising post- processing techniques, classified utilizing Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measures (SSIM) with a mean PSNR, SSIM and Compression Ratio of 38.45, 0.9602 and 1.75x respectively for the 50 test images, thus obtaining state-of-art performance for Quality Factor (QF)=5.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JPEG2000-Based Semantic Image Compression using CNN\",\"authors\":\"Anish Nagarsenker, P. Khandekar, Minal Deshmukh\",\"doi\":\"10.32985/ijeces.14.5.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some of the computer vision applications such as understanding, recognition as well as image processing are some areas where AI techniques like convolutional neural network (CNN) have attained great success. AI techniques are not very frequently used in applications like image compression which are a part of low-level vision applications. Intensifying the visual quality of the lossy video/image compression has been a huge obstacle for a very long time. Image processing tasks and image recognition can be addressed with the application of deep learning CNNs as a result of the availability of large training datasets and the recent advances in computing power. This paper consists of a CNN-based novel compression framework comprising of Compact CNN (ComCNN) and Reconstruction CNN (RecCNN) where they are trained concurrently and ideally consolidated into a compression framework, along with MS-ROI (Multi Structure-Region of Interest) mapping which highlights the semiotically notable portions of the image. The framework attains a mean PSNR value of 32.9dB, achieving a gain of 3.52dB and attains mean SSIM value of 0.9262, achieving a gain of 0.0723dB over the other methods when compared using the 6 main test images. Experimental results in the proposed study validate that the architecture substantially surpasses image compression frameworks, that utilized deblocking or denoising post- processing techniques, classified utilizing Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measures (SSIM) with a mean PSNR, SSIM and Compression Ratio of 38.45, 0.9602 and 1.75x respectively for the 50 test images, thus obtaining state-of-art performance for Quality Factor (QF)=5.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.5.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.5.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
JPEG2000-Based Semantic Image Compression using CNN
Some of the computer vision applications such as understanding, recognition as well as image processing are some areas where AI techniques like convolutional neural network (CNN) have attained great success. AI techniques are not very frequently used in applications like image compression which are a part of low-level vision applications. Intensifying the visual quality of the lossy video/image compression has been a huge obstacle for a very long time. Image processing tasks and image recognition can be addressed with the application of deep learning CNNs as a result of the availability of large training datasets and the recent advances in computing power. This paper consists of a CNN-based novel compression framework comprising of Compact CNN (ComCNN) and Reconstruction CNN (RecCNN) where they are trained concurrently and ideally consolidated into a compression framework, along with MS-ROI (Multi Structure-Region of Interest) mapping which highlights the semiotically notable portions of the image. The framework attains a mean PSNR value of 32.9dB, achieving a gain of 3.52dB and attains mean SSIM value of 0.9262, achieving a gain of 0.0723dB over the other methods when compared using the 6 main test images. Experimental results in the proposed study validate that the architecture substantially surpasses image compression frameworks, that utilized deblocking or denoising post- processing techniques, classified utilizing Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measures (SSIM) with a mean PSNR, SSIM and Compression Ratio of 38.45, 0.9602 and 1.75x respectively for the 50 test images, thus obtaining state-of-art performance for Quality Factor (QF)=5.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.