{"title":"函子紧支持扩张的一个下降原理","authors":"Josefien Kuijper","doi":"10.2140/akt.2023.8.489","DOIUrl":null,"url":null,"abstract":"A characteristic property of cohomology with compact support is the long exact sequence that connects the compactly supported cohomology groups of a space, an open subspace and its complement. Given an arbitrary cohomology theory of algebraic varieties, one can ask whether a compactly supported version exists, satisfying such a long exact sequence. This is the case whenever the cohomology theory satisfies descent for abstract blowups (also known as proper cdh descent). We make this precise by proving an equivalence between certain categories of hypersheaves. We show how several classical and non-trivial results, such as the existence of a unique weight filtration on cohomology with compact support, can be derived from this theorem.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A descent principle for compactly supported extensions of functors\",\"authors\":\"Josefien Kuijper\",\"doi\":\"10.2140/akt.2023.8.489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A characteristic property of cohomology with compact support is the long exact sequence that connects the compactly supported cohomology groups of a space, an open subspace and its complement. Given an arbitrary cohomology theory of algebraic varieties, one can ask whether a compactly supported version exists, satisfying such a long exact sequence. This is the case whenever the cohomology theory satisfies descent for abstract blowups (also known as proper cdh descent). We make this precise by proving an equivalence between certain categories of hypersheaves. We show how several classical and non-trivial results, such as the existence of a unique weight filtration on cohomology with compact support, can be derived from this theorem.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A descent principle for compactly supported extensions of functors
A characteristic property of cohomology with compact support is the long exact sequence that connects the compactly supported cohomology groups of a space, an open subspace and its complement. Given an arbitrary cohomology theory of algebraic varieties, one can ask whether a compactly supported version exists, satisfying such a long exact sequence. This is the case whenever the cohomology theory satisfies descent for abstract blowups (also known as proper cdh descent). We make this precise by proving an equivalence between certain categories of hypersheaves. We show how several classical and non-trivial results, such as the existence of a unique weight filtration on cohomology with compact support, can be derived from this theorem.