无界域上的拓扑度

Dhruba R. Adhikar, Ishwari J. Kunwar
{"title":"无界域上的拓扑度","authors":"Dhruba R. Adhikar, Ishwari J. Kunwar","doi":"10.30538/psrp-oma2018.0016","DOIUrl":null,"url":null,"abstract":"Let D be an open subset of RN and f : D → RN a continuous function. The classical topological degree for f demands that D be bounded. The boundedness of domains is also assumed for the topological degrees for compact displacements of the identity and for operators of monotone type in Banach spaces. In this work, we follow the methodology introduced by Nagumo for constructing topological degrees for functions on unbounded domains in finite dimensions and define the degrees for LeraySchauder operators and (S+)-operators on unbounded domains in infinite dimensions. Mathematics Subject Classification: Primary 47H14; Secondary 47H05, 47H11.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Degrees on Unbounded Domains\",\"authors\":\"Dhruba R. Adhikar, Ishwari J. Kunwar\",\"doi\":\"10.30538/psrp-oma2018.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be an open subset of RN and f : D → RN a continuous function. The classical topological degree for f demands that D be bounded. The boundedness of domains is also assumed for the topological degrees for compact displacements of the identity and for operators of monotone type in Banach spaces. In this work, we follow the methodology introduced by Nagumo for constructing topological degrees for functions on unbounded domains in finite dimensions and define the degrees for LeraySchauder operators and (S+)-operators on unbounded domains in infinite dimensions. Mathematics Subject Classification: Primary 47H14; Secondary 47H05, 47H11.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2018.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2018.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设D是RN和f:D的开子集→ RN是一个连续函数。f的经典拓扑度要求D是有界的。对于Banach空间中单位紧位移和单调型算子的拓扑度,也假定了域的有界性。在这项工作中,我们遵循Nagumo介绍的方法来构造有限维无界域上函数的拓扑度,并定义了无限维无界区域上LeraySchauder算子和(S+)-算子的拓扑度。数学学科分类:小学47H14;二次47H05、47H11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Degrees on Unbounded Domains
Let D be an open subset of RN and f : D → RN a continuous function. The classical topological degree for f demands that D be bounded. The boundedness of domains is also assumed for the topological degrees for compact displacements of the identity and for operators of monotone type in Banach spaces. In this work, we follow the methodology introduced by Nagumo for constructing topological degrees for functions on unbounded domains in finite dimensions and define the degrees for LeraySchauder operators and (S+)-operators on unbounded domains in infinite dimensions. Mathematics Subject Classification: Primary 47H14; Secondary 47H05, 47H11.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信