一对具有平衡数和Lucas平衡数互质系数的线性双变量丢番图方程的解

IF 0.4 Q4 MATHEMATICS
R. K. Davala
{"title":"一对具有平衡数和Lucas平衡数互质系数的线性双变量丢番图方程的解","authors":"R. K. Davala","doi":"10.7546/nntdm.2023.29.3.495-502","DOIUrl":null,"url":null,"abstract":"Let $B_n$ and $C_n$ be the $n$-th balancing and Lucas-balancing numbers, respectively. We consider the Diophantine equations $ax+by=\\frac{1}{2}(a-1)(b-1)$ and $1+ax+by=\\frac{1}{2}(a-1)(b-1)$ for $(a,b)$ $\\in$ $ \\{(B_n,B_{n+1}),(B_{2n-1},B_{2n+1}), (B_n,C_n),(C_n,C_{n+1})\\}$ and present the non-negative integer solutions of the Diophantine equations in each case.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution to a pair of linear, two-variable, Diophantine equations with coprime coefficients from balancing and Lucas-balancing numbers\",\"authors\":\"R. K. Davala\",\"doi\":\"10.7546/nntdm.2023.29.3.495-502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $B_n$ and $C_n$ be the $n$-th balancing and Lucas-balancing numbers, respectively. We consider the Diophantine equations $ax+by=\\\\frac{1}{2}(a-1)(b-1)$ and $1+ax+by=\\\\frac{1}{2}(a-1)(b-1)$ for $(a,b)$ $\\\\in$ $ \\\\{(B_n,B_{n+1}),(B_{2n-1},B_{2n+1}), (B_n,C_n),(C_n,C_{n+1})\\\\}$ and present the non-negative integer solutions of the Diophantine equations in each case.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.3.495-502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.3.495-502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$B_n$和$C_n$分别为$n$-平衡数和$n$-平衡数。我们考虑丢芬图方程$ax+by=\frac{1}{2}(a-1)(b-1)$和$1+ax+by=\frac{1}{2}(a-1)(b-1)$对于$(a,b)$ $\in$ $\ {(B_n,B_{n+1}),(B_{2n-1},B_{2n+1}), (B_n,C_n),(C_n,C_{n+1})\}$,并给出每种情况下丢芬图方程的非负整数解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution to a pair of linear, two-variable, Diophantine equations with coprime coefficients from balancing and Lucas-balancing numbers
Let $B_n$ and $C_n$ be the $n$-th balancing and Lucas-balancing numbers, respectively. We consider the Diophantine equations $ax+by=\frac{1}{2}(a-1)(b-1)$ and $1+ax+by=\frac{1}{2}(a-1)(b-1)$ for $(a,b)$ $\in$ $ \{(B_n,B_{n+1}),(B_{2n-1},B_{2n+1}), (B_n,C_n),(C_n,C_{n+1})\}$ and present the non-negative integer solutions of the Diophantine equations in each case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信