加权拉普拉斯算子和加权p -拉普拉斯算子的特征值估计

IF 0.5 4区 数学 Q3 MATHEMATICS
Feng Du, Jing Mao, Qiaoling Wang, C. Xia
{"title":"加权拉普拉斯算子和加权p -拉普拉斯算子的特征值估计","authors":"Feng Du, Jing Mao, Qiaoling Wang, C. Xia","doi":"10.32917/h2020086","DOIUrl":null,"url":null,"abstract":"A bstract . In this paper, we study two eigenvalue problems of the weighted Laplacian and get the Reilly-type bounds and isoperimetric type bounds for the first nonzero n eigenvalues on hypersurfaces of the Euclidean space. Besides, we give lower bounds for the first eigenvalue of weighted p -Laplacian on submanifolds with locally bounded weighted mean curvature. Meanwhile, several applications of these estimates have also been given.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimates for eigenvalues of weighted Laplacian and weighted $p$-Laplacian\",\"authors\":\"Feng Du, Jing Mao, Qiaoling Wang, C. Xia\",\"doi\":\"10.32917/h2020086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . In this paper, we study two eigenvalue problems of the weighted Laplacian and get the Reilly-type bounds and isoperimetric type bounds for the first nonzero n eigenvalues on hypersurfaces of the Euclidean space. Besides, we give lower bounds for the first eigenvalue of weighted p -Laplacian on submanifolds with locally bounded weighted mean curvature. Meanwhile, several applications of these estimates have also been given.\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2020086\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2020086","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要。本文研究了加权拉普拉斯算子的两个特征值问题,得到了欧氏空间超曲面上第一个非零n个特征值的Reilly型界和等周型界。此外,我们给出了具有局部有界加权平均曲率的子流形上加权p-Laplacian的第一特征值的下界。同时,也给出了这些估计的几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates for eigenvalues of weighted Laplacian and weighted $p$-Laplacian
A bstract . In this paper, we study two eigenvalue problems of the weighted Laplacian and get the Reilly-type bounds and isoperimetric type bounds for the first nonzero n eigenvalues on hypersurfaces of the Euclidean space. Besides, we give lower bounds for the first eigenvalue of weighted p -Laplacian on submanifolds with locally bounded weighted mean curvature. Meanwhile, several applications of these estimates have also been given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信