无约束最小化中考虑直线搜索条件的拟牛顿方法的比较

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
K. Kiran
{"title":"无约束最小化中考虑直线搜索条件的拟牛顿方法的比较","authors":"K. Kiran","doi":"10.1080/02522667.2022.2103303","DOIUrl":null,"url":null,"abstract":"Abstract Optimization algorithms are essential tools in all fields such as engineering, business, science and even in nature. Their performance and efficiency may differ from problem-to-problem. In this respect, the current paper aims to provide an understanding of the three well-known Quasi-Newton methods relation with various line search conditions on a performance basis. To this end, the fifteen Quasi-Newton method-line search condition combinations, which are composed of Symmetric-Rank-1 (SR-1), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Davidon-Fletcher-Powell (DFP) Quasi-Newton methods and Backtracking (BC), Armijo-Backtracking (ABC), Goldstein (GC), Weak Wolfe (WWC) and Strong Wolfe (SWC) conditions, are subjected to totally 195 computational experiments using thirteen test functions including smooth and non-smooth ones. During the experiments, the number of function evaluations at every iteration for all the combinations are kept track and the total number of function evaluations, when each combination converges, are set as a first performance metric. In addition to that, the eigenvalues of Hessian approximation matrix are checked if the updated matrix is positive definite or not. In case of having a negative definite Hessian approximation, the eigenvalue modification procedure is employed to guarantee that the updated matrix is positive definite, which in turn progress along the descent direction. Besides, for purpose of using in the performance evaluations, the number of negative definite matrix generations, as a second performance metric, are recorded for all the combinations. To conduct a reliable and an efficient performance analysis on the combinations, the performance and data profiles are used along with the number of negative definite Hessian matrix update generations. Based on the mathematical analysis through those data, the BFGS-GC combination is the fastest one whereas the slowest one is the DFP-SWC combination. For an optimal choice, it is determined that the BFGS-WWC combination is a great candidate. It is also observed that the BFGS and DFP methods operate very well as long as the curvature condition is satisfied by any line search conditions. However, this statement is not valid for the SR-1 method.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"43 1","pages":"2031 - 2053"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of Quasi-Newton methods considering line search conditions in unconstrained minimization\",\"authors\":\"K. Kiran\",\"doi\":\"10.1080/02522667.2022.2103303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Optimization algorithms are essential tools in all fields such as engineering, business, science and even in nature. Their performance and efficiency may differ from problem-to-problem. In this respect, the current paper aims to provide an understanding of the three well-known Quasi-Newton methods relation with various line search conditions on a performance basis. To this end, the fifteen Quasi-Newton method-line search condition combinations, which are composed of Symmetric-Rank-1 (SR-1), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Davidon-Fletcher-Powell (DFP) Quasi-Newton methods and Backtracking (BC), Armijo-Backtracking (ABC), Goldstein (GC), Weak Wolfe (WWC) and Strong Wolfe (SWC) conditions, are subjected to totally 195 computational experiments using thirteen test functions including smooth and non-smooth ones. During the experiments, the number of function evaluations at every iteration for all the combinations are kept track and the total number of function evaluations, when each combination converges, are set as a first performance metric. In addition to that, the eigenvalues of Hessian approximation matrix are checked if the updated matrix is positive definite or not. In case of having a negative definite Hessian approximation, the eigenvalue modification procedure is employed to guarantee that the updated matrix is positive definite, which in turn progress along the descent direction. Besides, for purpose of using in the performance evaluations, the number of negative definite matrix generations, as a second performance metric, are recorded for all the combinations. To conduct a reliable and an efficient performance analysis on the combinations, the performance and data profiles are used along with the number of negative definite Hessian matrix update generations. Based on the mathematical analysis through those data, the BFGS-GC combination is the fastest one whereas the slowest one is the DFP-SWC combination. For an optimal choice, it is determined that the BFGS-WWC combination is a great candidate. It is also observed that the BFGS and DFP methods operate very well as long as the curvature condition is satisfied by any line search conditions. However, this statement is not valid for the SR-1 method.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":\"43 1\",\"pages\":\"2031 - 2053\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02522667.2022.2103303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2103303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要优化算法是工程、商业、科学乃至自然界各个领域必不可少的工具。它们的性能和效率可能因问题而异。在这方面,本文旨在从性能的角度理解三种著名的准牛顿方法与各种线搜索条件的关系。为此,采用光滑和非光滑13种测试函数,对对称秩-1 (SR-1)、Broyden-Fletcher-Goldfarb-Shanno (BFGS)和Davidon-Fletcher-Powell (DFP)拟牛顿方法和回溯(BC)、Armijo-Backtracking (ABC)、Goldstein (GC)、Weak Wolfe (WWC)和Strong Wolfe (SWC)条件组成的15种拟牛顿方法线搜索条件组合进行了195次计算实验。在实验过程中,跟踪所有组合在每次迭代时的函数评估次数,并将每个组合收敛时的函数评估总数设置为第一个性能指标。此外,还检验了更新后的矩阵是否为正定的Hessian近似矩阵的特征值。当Hessian近似为负定时,采用特征值修正过程保证更新后的矩阵是正定的,并沿下降方向进行。此外,为了便于在性能评价中使用,还记录了所有组合的负定矩阵代数作为第二个性能指标。为了对组合进行可靠和有效的性能分析,使用了性能和数据概况以及负定Hessian矩阵更新代的数量。通过对这些数据的数学分析,发现BFGS-GC组合速度最快,DFP-SWC组合速度最慢。对于最优选择,确定BFGS-WWC组合是一个很好的选择。还观察到BFGS和DFP方法在满足曲率条件的情况下,只要满足任何直线搜索条件,都可以很好地运行。但是,此语句对SR-1方法无效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of Quasi-Newton methods considering line search conditions in unconstrained minimization
Abstract Optimization algorithms are essential tools in all fields such as engineering, business, science and even in nature. Their performance and efficiency may differ from problem-to-problem. In this respect, the current paper aims to provide an understanding of the three well-known Quasi-Newton methods relation with various line search conditions on a performance basis. To this end, the fifteen Quasi-Newton method-line search condition combinations, which are composed of Symmetric-Rank-1 (SR-1), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Davidon-Fletcher-Powell (DFP) Quasi-Newton methods and Backtracking (BC), Armijo-Backtracking (ABC), Goldstein (GC), Weak Wolfe (WWC) and Strong Wolfe (SWC) conditions, are subjected to totally 195 computational experiments using thirteen test functions including smooth and non-smooth ones. During the experiments, the number of function evaluations at every iteration for all the combinations are kept track and the total number of function evaluations, when each combination converges, are set as a first performance metric. In addition to that, the eigenvalues of Hessian approximation matrix are checked if the updated matrix is positive definite or not. In case of having a negative definite Hessian approximation, the eigenvalue modification procedure is employed to guarantee that the updated matrix is positive definite, which in turn progress along the descent direction. Besides, for purpose of using in the performance evaluations, the number of negative definite matrix generations, as a second performance metric, are recorded for all the combinations. To conduct a reliable and an efficient performance analysis on the combinations, the performance and data profiles are used along with the number of negative definite Hessian matrix update generations. Based on the mathematical analysis through those data, the BFGS-GC combination is the fastest one whereas the slowest one is the DFP-SWC combination. For an optimal choice, it is determined that the BFGS-WWC combination is a great candidate. It is also observed that the BFGS and DFP methods operate very well as long as the curvature condition is satisfied by any line search conditions. However, this statement is not valid for the SR-1 method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信