弹性力学边值问题中的超奇异积分方程

IF 0.8
S M Mkhitaryan;M S Mkrtchyan;E G Kanetsyan
{"title":"弹性力学边值问题中的超奇异积分方程","authors":"S M Mkhitaryan;M S Mkrtchyan;E G Kanetsyan","doi":"10.1093/qjmam/hbz022","DOIUrl":null,"url":null,"abstract":"The exact solutions of a class of hypersingular integral equations with kernels \n<tex>$\\left( {s-x} \\right)^{-2}$</tex>\n, \n<tex>$\\left( {\\sin \\frac{s-x}{2}} \\right)^{-2}$</tex>\n, \n<tex>$\\left( {\\sinh \\frac{s-x}{2}} \\right)^{-2},\\cos \\frac{s-x}{2}\\left( {\\sin \\frac{s-x}{2}} \\right)^{-2}$</tex>\n, \n<tex>$\\cosh \\frac{s-x}{2}\\left( {\\sinh \\frac{s-x}{2}} \\right)^{-2}$</tex>\n are obtained where the integrals must be interpreted as Hadamard finite-part integrals. Problems of cracks in elastic bodies of various canonical forms under antiplane and plane deformations, where the crack edges are loaded symmetrically, lead to such equations. These problems, in turn, lead to mixed boundary value problems of the mathematical theory of elasticity for a half-plane, a circle, a strip and a wedge.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"73 1","pages":"51-75"},"PeriodicalIF":0.8000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbz022","citationCount":"2","resultStr":"{\"title\":\"Hypersingular Integral Equations Arising in the Boundary Value Problems of the Elasticity Theory\",\"authors\":\"S M Mkhitaryan;M S Mkrtchyan;E G Kanetsyan\",\"doi\":\"10.1093/qjmam/hbz022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exact solutions of a class of hypersingular integral equations with kernels \\n<tex>$\\\\left( {s-x} \\\\right)^{-2}$</tex>\\n, \\n<tex>$\\\\left( {\\\\sin \\\\frac{s-x}{2}} \\\\right)^{-2}$</tex>\\n, \\n<tex>$\\\\left( {\\\\sinh \\\\frac{s-x}{2}} \\\\right)^{-2},\\\\cos \\\\frac{s-x}{2}\\\\left( {\\\\sin \\\\frac{s-x}{2}} \\\\right)^{-2}$</tex>\\n, \\n<tex>$\\\\cosh \\\\frac{s-x}{2}\\\\left( {\\\\sinh \\\\frac{s-x}{2}} \\\\right)^{-2}$</tex>\\n are obtained where the integrals must be interpreted as Hadamard finite-part integrals. Problems of cracks in elastic bodies of various canonical forms under antiplane and plane deformations, where the crack edges are loaded symmetrically, lead to such equations. These problems, in turn, lead to mixed boundary value problems of the mathematical theory of elasticity for a half-plane, a circle, a strip and a wedge.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"73 1\",\"pages\":\"51-75\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qjmam/hbz022\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9108367/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9108367/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一类核为$\left({s-x}\right)^{-2}$,$\left({\sin\frac{s-x}{2}}\rights)^{-2}$,$\left,$\cosh\frac{s-x}{2}\left({\sinh\frac}s-x{2}}\right)^{-2}$,其中积分必须解释为Hadamard有限部分积分。各种规范形式的弹性体在反平面和平面变形下的裂纹问题,其中裂纹边缘对称加载,导致了这样的方程。这些问题反过来又导致了半平面、圆、带和楔的弹性数学理论的混合边值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypersingular Integral Equations Arising in the Boundary Value Problems of the Elasticity Theory
The exact solutions of a class of hypersingular integral equations with kernels $\left( {s-x} \right)^{-2}$ , $\left( {\sin \frac{s-x}{2}} \right)^{-2}$ , $\left( {\sinh \frac{s-x}{2}} \right)^{-2},\cos \frac{s-x}{2}\left( {\sin \frac{s-x}{2}} \right)^{-2}$ , $\cosh \frac{s-x}{2}\left( {\sinh \frac{s-x}{2}} \right)^{-2}$ are obtained where the integrals must be interpreted as Hadamard finite-part integrals. Problems of cracks in elastic bodies of various canonical forms under antiplane and plane deformations, where the crack edges are loaded symmetrically, lead to such equations. These problems, in turn, lead to mixed boundary value problems of the mathematical theory of elasticity for a half-plane, a circle, a strip and a wedge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信