S. O. Heck, V. A. Zborowski, P. M. Chagas, S. D. da Luz, C. F. Bortolatto
{"title":"对氯二苯基二硒化物对非离子表面活性剂tyloxapol诱导的大鼠血脂变化及肝毒性的影响","authors":"S. O. Heck, V. A. Zborowski, P. M. Chagas, S. D. da Luz, C. F. Bortolatto","doi":"10.1080/15376516.2019.1669240","DOIUrl":null,"url":null,"abstract":"Abstract Tyloxapol is a nonionic surfactant oligomer inductor of dyslipidemia, which in turn is a risk factor for liver damage. Selenium-based compounds have emerged as promising therapeutic candidates for treating different experimental disorders. This study investigated the effects of p-chloro-diphenyl diselenide (p-ClPhSe)2 on toxicity induced by Tyloxapol in rats. Plasma lipid profile, hepatic functionality and oxidative stress parameters were evaluated in adult male Wistar rats treated with (p-ClPhSe)2 (10 mg/kg; oral administration by gavage) for seven days and exposed to a single Tyloxapol injection (400 mg/kg; intraperitoneal route) 30 min after the last (p-ClPhSe)2 treatment. Tyloxapol exposure increased the plasma levels of total cholesterol, triacylglycerol, non-HDL-cholesterol and the calculated cardiac risk index (CRI). The plasma activities of alanine and aspartate aminotransferase (ALT and AST, liver function markers) were increased in rats exposed to Tyloxapol, which demonstrates a hepatic lipotoxicity. In the liver, reactive oxygen species (ROS) content was enhanced and the non-protein sulfhydryl (NPSH) levels were decreased by Tyloxapol. The data revealed that repeated treatment with (p-ClPhSe)2 reduced plasma lipid alterations and hepatotoxicity induced by Tyloxapol. Although (p-ClPhSe)2 did not reduce ROS levels increased by Tyloxapol, it increased NPSH content in the liver. Pearson’s correlation coefficient revealed a positive relationship between the levels of hepatic NPSH and plasma HDL. HDL is known by eliciting antioxidant activity; therefore, the improvement in HDL function could be suggested as a therapeutic target. In conclusion, the results demonstrate the protective effects of (p-ClPhSe)2 on the hepatic lipotoxicity induced by Tyloxapol in rats.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"30 1","pages":"73 - 80"},"PeriodicalIF":2.8000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2019.1669240","citationCount":"1","resultStr":"{\"title\":\"p-Chloro-diphenyl diselenide attenuates plasma lipid profile changes and hepatotoxicity induced by nonionic surfactant tyloxapol in rats\",\"authors\":\"S. O. Heck, V. A. Zborowski, P. M. Chagas, S. D. da Luz, C. F. Bortolatto\",\"doi\":\"10.1080/15376516.2019.1669240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tyloxapol is a nonionic surfactant oligomer inductor of dyslipidemia, which in turn is a risk factor for liver damage. Selenium-based compounds have emerged as promising therapeutic candidates for treating different experimental disorders. This study investigated the effects of p-chloro-diphenyl diselenide (p-ClPhSe)2 on toxicity induced by Tyloxapol in rats. Plasma lipid profile, hepatic functionality and oxidative stress parameters were evaluated in adult male Wistar rats treated with (p-ClPhSe)2 (10 mg/kg; oral administration by gavage) for seven days and exposed to a single Tyloxapol injection (400 mg/kg; intraperitoneal route) 30 min after the last (p-ClPhSe)2 treatment. Tyloxapol exposure increased the plasma levels of total cholesterol, triacylglycerol, non-HDL-cholesterol and the calculated cardiac risk index (CRI). The plasma activities of alanine and aspartate aminotransferase (ALT and AST, liver function markers) were increased in rats exposed to Tyloxapol, which demonstrates a hepatic lipotoxicity. In the liver, reactive oxygen species (ROS) content was enhanced and the non-protein sulfhydryl (NPSH) levels were decreased by Tyloxapol. The data revealed that repeated treatment with (p-ClPhSe)2 reduced plasma lipid alterations and hepatotoxicity induced by Tyloxapol. Although (p-ClPhSe)2 did not reduce ROS levels increased by Tyloxapol, it increased NPSH content in the liver. Pearson’s correlation coefficient revealed a positive relationship between the levels of hepatic NPSH and plasma HDL. HDL is known by eliciting antioxidant activity; therefore, the improvement in HDL function could be suggested as a therapeutic target. In conclusion, the results demonstrate the protective effects of (p-ClPhSe)2 on the hepatic lipotoxicity induced by Tyloxapol in rats.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"30 1\",\"pages\":\"73 - 80\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15376516.2019.1669240\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2019.1669240\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2019.1669240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
p-Chloro-diphenyl diselenide attenuates plasma lipid profile changes and hepatotoxicity induced by nonionic surfactant tyloxapol in rats
Abstract Tyloxapol is a nonionic surfactant oligomer inductor of dyslipidemia, which in turn is a risk factor for liver damage. Selenium-based compounds have emerged as promising therapeutic candidates for treating different experimental disorders. This study investigated the effects of p-chloro-diphenyl diselenide (p-ClPhSe)2 on toxicity induced by Tyloxapol in rats. Plasma lipid profile, hepatic functionality and oxidative stress parameters were evaluated in adult male Wistar rats treated with (p-ClPhSe)2 (10 mg/kg; oral administration by gavage) for seven days and exposed to a single Tyloxapol injection (400 mg/kg; intraperitoneal route) 30 min after the last (p-ClPhSe)2 treatment. Tyloxapol exposure increased the plasma levels of total cholesterol, triacylglycerol, non-HDL-cholesterol and the calculated cardiac risk index (CRI). The plasma activities of alanine and aspartate aminotransferase (ALT and AST, liver function markers) were increased in rats exposed to Tyloxapol, which demonstrates a hepatic lipotoxicity. In the liver, reactive oxygen species (ROS) content was enhanced and the non-protein sulfhydryl (NPSH) levels were decreased by Tyloxapol. The data revealed that repeated treatment with (p-ClPhSe)2 reduced plasma lipid alterations and hepatotoxicity induced by Tyloxapol. Although (p-ClPhSe)2 did not reduce ROS levels increased by Tyloxapol, it increased NPSH content in the liver. Pearson’s correlation coefficient revealed a positive relationship between the levels of hepatic NPSH and plasma HDL. HDL is known by eliciting antioxidant activity; therefore, the improvement in HDL function could be suggested as a therapeutic target. In conclusion, the results demonstrate the protective effects of (p-ClPhSe)2 on the hepatic lipotoxicity induced by Tyloxapol in rats.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.