{"title":"应用热泳力和扩散热在可拉伸圆盘上布朗运动微极流体中的材料行为","authors":"S. Hazarika, S. Ahmed","doi":"10.3329/jname.v18i1.52518","DOIUrl":null,"url":null,"abstract":"To study the material behavior of axisymmetric flow in micropolar fluid for heat and mass exchange over a stretchable disk placed in porous medium taking into account the effect of heat generation, diffusion thermo, Brownian motion and thermophoretic effect. A suitable similarity transformations is adapted to convert the governing PDEs to non-dimensional form. A well-tested, numerically stable MATLAB code in connection with Bvp4c is employed for the conservation of equations. The noticeable features of the relevant parameters on micropolar fluid flow for axial velocity, radial velocity, micro-rotation, temperature and species concentrations profiles are accentuated on the plots using MATLAB. It is found that angular velocity is enhanced for augmented values of micropolar parameter. Moreover, due the effect of thermophoretic force, the thickness of thermal and concentration boundary layer are enhanced. In addition, thermal diffusion becomes more due to the increase in the vortex viscosity of the fluid, and an amplified thermal and molar concentration boundary layer thicknesses can be found. This study incorporates numerous engineering applications on rotating machineries, spin-coating, centrifugal pumps, computer storage devices, chemical engineering and different aerodynamic issues. Also, this analysis signifies great impact on biomechanics and stenosis related issue in medical sciences.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Material behaviour in micropolar fluid of Brownian motion over a stretchable disk with application of thermophoretic forces and diffusion-thermo\",\"authors\":\"S. Hazarika, S. Ahmed\",\"doi\":\"10.3329/jname.v18i1.52518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the material behavior of axisymmetric flow in micropolar fluid for heat and mass exchange over a stretchable disk placed in porous medium taking into account the effect of heat generation, diffusion thermo, Brownian motion and thermophoretic effect. A suitable similarity transformations is adapted to convert the governing PDEs to non-dimensional form. A well-tested, numerically stable MATLAB code in connection with Bvp4c is employed for the conservation of equations. The noticeable features of the relevant parameters on micropolar fluid flow for axial velocity, radial velocity, micro-rotation, temperature and species concentrations profiles are accentuated on the plots using MATLAB. It is found that angular velocity is enhanced for augmented values of micropolar parameter. Moreover, due the effect of thermophoretic force, the thickness of thermal and concentration boundary layer are enhanced. In addition, thermal diffusion becomes more due to the increase in the vortex viscosity of the fluid, and an amplified thermal and molar concentration boundary layer thicknesses can be found. This study incorporates numerous engineering applications on rotating machineries, spin-coating, centrifugal pumps, computer storage devices, chemical engineering and different aerodynamic issues. Also, this analysis signifies great impact on biomechanics and stenosis related issue in medical sciences.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i1.52518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.52518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Material behaviour in micropolar fluid of Brownian motion over a stretchable disk with application of thermophoretic forces and diffusion-thermo
To study the material behavior of axisymmetric flow in micropolar fluid for heat and mass exchange over a stretchable disk placed in porous medium taking into account the effect of heat generation, diffusion thermo, Brownian motion and thermophoretic effect. A suitable similarity transformations is adapted to convert the governing PDEs to non-dimensional form. A well-tested, numerically stable MATLAB code in connection with Bvp4c is employed for the conservation of equations. The noticeable features of the relevant parameters on micropolar fluid flow for axial velocity, radial velocity, micro-rotation, temperature and species concentrations profiles are accentuated on the plots using MATLAB. It is found that angular velocity is enhanced for augmented values of micropolar parameter. Moreover, due the effect of thermophoretic force, the thickness of thermal and concentration boundary layer are enhanced. In addition, thermal diffusion becomes more due to the increase in the vortex viscosity of the fluid, and an amplified thermal and molar concentration boundary layer thicknesses can be found. This study incorporates numerous engineering applications on rotating machineries, spin-coating, centrifugal pumps, computer storage devices, chemical engineering and different aerodynamic issues. Also, this analysis signifies great impact on biomechanics and stenosis related issue in medical sciences.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.