{"title":"填补PARP抑制剂诱导的合成致死率的空白","authors":"Mariana Paes Dias, J. Jonkers","doi":"10.1080/23723556.2021.2010512","DOIUrl":null,"url":null,"abstract":"ABSTRACT Tumors with loss of breast cancer type 1 susceptibility protein (BRCA1) are homologous recombination (HR) deficient and hypersensitive to poly(ADP-ribose) polymerase inhibitors (PARPi). However, these tumors may restore HR and acquire PARPi resistance via loss of end-protection of DNA double-strand breaks. We found that loss of nuclear DNA ligase III resensitizes HR-restored BRCA1-deficient cells to PARPi by exposing post-replicative single-stranded DNA (ssDNA) gaps. Our work, and that of others, identifies ssDNA gaps as a key determinant of PARPi response.","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Filling in the gaps in PARP inhibitor-induced synthetic lethality\",\"authors\":\"Mariana Paes Dias, J. Jonkers\",\"doi\":\"10.1080/23723556.2021.2010512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Tumors with loss of breast cancer type 1 susceptibility protein (BRCA1) are homologous recombination (HR) deficient and hypersensitive to poly(ADP-ribose) polymerase inhibitors (PARPi). However, these tumors may restore HR and acquire PARPi resistance via loss of end-protection of DNA double-strand breaks. We found that loss of nuclear DNA ligase III resensitizes HR-restored BRCA1-deficient cells to PARPi by exposing post-replicative single-stranded DNA (ssDNA) gaps. Our work, and that of others, identifies ssDNA gaps as a key determinant of PARPi response.\",\"PeriodicalId\":37292,\"journal\":{\"name\":\"Molecular and Cellular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23723556.2021.2010512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23723556.2021.2010512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Filling in the gaps in PARP inhibitor-induced synthetic lethality
ABSTRACT Tumors with loss of breast cancer type 1 susceptibility protein (BRCA1) are homologous recombination (HR) deficient and hypersensitive to poly(ADP-ribose) polymerase inhibitors (PARPi). However, these tumors may restore HR and acquire PARPi resistance via loss of end-protection of DNA double-strand breaks. We found that loss of nuclear DNA ligase III resensitizes HR-restored BRCA1-deficient cells to PARPi by exposing post-replicative single-stranded DNA (ssDNA) gaps. Our work, and that of others, identifies ssDNA gaps as a key determinant of PARPi response.
期刊介绍:
For a long time, solid neoplasms have been viewed as relatively homogeneous entities composed for the most part of malignant cells. It is now clear that tumors are highly heterogeneous structures that evolve in the context of intimate interactions between cancer cells and endothelial, stromal as well as immune cells. During the past few years, experimental and clinical oncologists have witnessed several conceptual transitions of this type. Molecular and Cellular Oncology (MCO) emerges within this conceptual framework as a high-profile forum for the publication of fundamental, translational and clinical research on cancer. The scope of MCO is broad. Submissions dealing with all aspects of oncogenesis, tumor progression and response to therapy will be welcome, irrespective of whether they focus on solid or hematological neoplasms. MCO has gathered leading scientists with expertise in multiple areas of cancer research and other fields of investigation to constitute a large, interdisciplinary, Editorial Board that will ensure the quality of articles accepted for publication. MCO will publish Original Research Articles, Brief Reports, Reviews, Short Reviews, Commentaries, Author Views (auto-commentaries) and Meeting Reports dealing with all aspects of cancer research.