{"title":"聚氨酯/药物负载halloysite纳米管基电纺纳米复合材料的药物缓释","authors":"M. Joshi, Sukumar Roy, V. Venugopal","doi":"10.1088/2043-6262/acc454","DOIUrl":null,"url":null,"abstract":"In this study, electrospun polyurethane nanofibre composite incorporated with drug loaded halloysite nanotubes is presented. Chlorhexidine acetate (CA) drug was loaded into the halloysite nanotubes (HNT) to facilitate its controlled release for prolonged efficacy. The drug loading percentage in HNT was determined using thermo-gravimetric (TG) analysis. Uniform fibrous webs were obtained by electrospinning technique with optimised process parameters (i.e., 10 KV, flow rate of 5 μl min−1 and needle to collector distance of 10 cm) which was evident from SEM images. Antimicrobial efficiency of the nanowebs was determined using disk diffusion method (AATCC 90) against both the Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The polyurethane/HNT-CA nanowebs showed very good activity against these strains. The drug release analysis of the nanowebs was carried by UV–vis spectrophotometry using total immersion method. The nanocomposite with drug loaded in HNT showed higher controlled release characteristics as evident from the drug release assay.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyurethane/ drug loaded halloysite nanotubes based electrospun nanocomposite for sustained drug release\",\"authors\":\"M. Joshi, Sukumar Roy, V. Venugopal\",\"doi\":\"10.1088/2043-6262/acc454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, electrospun polyurethane nanofibre composite incorporated with drug loaded halloysite nanotubes is presented. Chlorhexidine acetate (CA) drug was loaded into the halloysite nanotubes (HNT) to facilitate its controlled release for prolonged efficacy. The drug loading percentage in HNT was determined using thermo-gravimetric (TG) analysis. Uniform fibrous webs were obtained by electrospinning technique with optimised process parameters (i.e., 10 KV, flow rate of 5 μl min−1 and needle to collector distance of 10 cm) which was evident from SEM images. Antimicrobial efficiency of the nanowebs was determined using disk diffusion method (AATCC 90) against both the Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The polyurethane/HNT-CA nanowebs showed very good activity against these strains. The drug release analysis of the nanowebs was carried by UV–vis spectrophotometry using total immersion method. The nanocomposite with drug loaded in HNT showed higher controlled release characteristics as evident from the drug release assay.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/acc454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/acc454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyurethane/ drug loaded halloysite nanotubes based electrospun nanocomposite for sustained drug release
In this study, electrospun polyurethane nanofibre composite incorporated with drug loaded halloysite nanotubes is presented. Chlorhexidine acetate (CA) drug was loaded into the halloysite nanotubes (HNT) to facilitate its controlled release for prolonged efficacy. The drug loading percentage in HNT was determined using thermo-gravimetric (TG) analysis. Uniform fibrous webs were obtained by electrospinning technique with optimised process parameters (i.e., 10 KV, flow rate of 5 μl min−1 and needle to collector distance of 10 cm) which was evident from SEM images. Antimicrobial efficiency of the nanowebs was determined using disk diffusion method (AATCC 90) against both the Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. The polyurethane/HNT-CA nanowebs showed very good activity against these strains. The drug release analysis of the nanowebs was carried by UV–vis spectrophotometry using total immersion method. The nanocomposite with drug loaded in HNT showed higher controlled release characteristics as evident from the drug release assay.