结果和暴露错误分类的二次使用数据的最佳多波验证

Pub Date : 2023-03-31 DOI:10.1002/cjs.11772
Sarah C. Lotspeich, Gustavo G. C. Amorim, Pamela A. Shaw, Ran Tao, Bryan E. Shepherd
{"title":"结果和暴露错误分类的二次使用数据的最佳多波验证","authors":"Sarah C. Lotspeich,&nbsp;Gustavo G. C. Amorim,&nbsp;Pamela A. Shaw,&nbsp;Ran Tao,&nbsp;Bryan E. Shepherd","doi":"10.1002/cjs.11772","DOIUrl":null,"url":null,"abstract":"<p>Observational databases provide unprecedented opportunities for secondary use in biomedical research. However, these data can be error-prone and must be validated before use. It is usually unrealistic to validate the whole database because of resource constraints. A cost-effective alternative is a two-phase design that validates a subset of records enriched for information about a particular research question. We consider odds ratio estimation under differential outcome and exposure misclassification and propose optimal designs that minimize the variance of the maximum likelihood estimator. Our adaptive grid search algorithm can locate the optimal design in a computationally feasible manner. Because the optimal design relies on unknown parameters, we introduce a multiwave strategy to approximate the optimal design. We demonstrate the proposed design's efficiency gains through simulations and two large observational studies.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11772","citationCount":"0","resultStr":"{\"title\":\"Optimal multiwave validation of secondary use data with outcome and exposure misclassification\",\"authors\":\"Sarah C. Lotspeich,&nbsp;Gustavo G. C. Amorim,&nbsp;Pamela A. Shaw,&nbsp;Ran Tao,&nbsp;Bryan E. Shepherd\",\"doi\":\"10.1002/cjs.11772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Observational databases provide unprecedented opportunities for secondary use in biomedical research. However, these data can be error-prone and must be validated before use. It is usually unrealistic to validate the whole database because of resource constraints. A cost-effective alternative is a two-phase design that validates a subset of records enriched for information about a particular research question. We consider odds ratio estimation under differential outcome and exposure misclassification and propose optimal designs that minimize the variance of the maximum likelihood estimator. Our adaptive grid search algorithm can locate the optimal design in a computationally feasible manner. Because the optimal design relies on unknown parameters, we introduce a multiwave strategy to approximate the optimal design. We demonstrate the proposed design's efficiency gains through simulations and two large observational studies.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11772\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录(EHR)等观测数据库的日益可用性为在生物医学研究中二次使用此类数据提供了前所未有的机会。然而,这些数据可能容易出错,需要在使用前进行验证。由于资源限制,验证整个数据库通常是不现实的。一种具有成本效益的替代方案是实施两阶段设计,验证患者记录的子集,这些子集被丰富以获取有关感兴趣的研究问题的信息。在此,我们考虑了差异结果和暴露错误分类下的比值比估计。我们提出了最小化最大似然比值比估计器方差的最优设计。我们开发了一种新的自适应网格搜索算法,该算法可以以计算可行和数值精确的方式定位最优设计。由于优化设计一开始就需要指定未知参数,因此在没有先验信息的情况下是无法实现的,因此我们引入了一种多波采样策略来在实践中对其进行近似。通过广泛的模拟和两项大型观测研究,我们展示了拟议设计相对于现有设计的效率增益。我们提供R包和Shiny应用程序,以方便使用最佳设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal multiwave validation of secondary use data with outcome and exposure misclassification

分享
查看原文
Optimal multiwave validation of secondary use data with outcome and exposure misclassification

Observational databases provide unprecedented opportunities for secondary use in biomedical research. However, these data can be error-prone and must be validated before use. It is usually unrealistic to validate the whole database because of resource constraints. A cost-effective alternative is a two-phase design that validates a subset of records enriched for information about a particular research question. We consider odds ratio estimation under differential outcome and exposure misclassification and propose optimal designs that minimize the variance of the maximum likelihood estimator. Our adaptive grid search algorithm can locate the optimal design in a computationally feasible manner. Because the optimal design relies on unknown parameters, we introduce a multiwave strategy to approximate the optimal design. We demonstrate the proposed design's efficiency gains through simulations and two large observational studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信