具有积分边界条件的奇摄动问题的加速指数拟合算子方法

IF 1.4 Q2 MATHEMATICS, APPLIED
H. Debela, G. Duressa
{"title":"具有积分边界条件的奇摄动问题的加速指数拟合算子方法","authors":"H. Debela, G. Duressa","doi":"10.1155/2020/9268181","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of singularly perturbed differential equations of convection diffusion type with integral boundary condition. An accelerated uniformly convergent numerical method is constructed via exponentially fitted operator method using Richardson extrapolation techniques and numerical integration methods to solve the problem. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be - uniformly convergent.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2020 1","pages":"1-8"},"PeriodicalIF":1.4000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9268181","citationCount":"5","resultStr":"{\"title\":\"Accelerated Exponentially Fitted Operator Method for Singularly Perturbed Problems with Integral Boundary Condition\",\"authors\":\"H. Debela, G. Duressa\",\"doi\":\"10.1155/2020/9268181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a class of singularly perturbed differential equations of convection diffusion type with integral boundary condition. An accelerated uniformly convergent numerical method is constructed via exponentially fitted operator method using Richardson extrapolation techniques and numerical integration methods to solve the problem. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be - uniformly convergent.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\"2020 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/9268181\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/9268181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9268181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文考虑一类具有积分边界条件的对流-扩散型奇摄动微分方程。利用Richardson外插技术和数值积分方法,通过指数拟合算子法构造了一个加速一致收敛的数值方法来求解该问题。利用数值积分技术处理积分边界条件。对于所考虑的数值示例,列出了扰动参数和网格尺寸的不同值的最大绝对误差和收敛率。证明了该方法是一致收敛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated Exponentially Fitted Operator Method for Singularly Perturbed Problems with Integral Boundary Condition
In this paper, we consider a class of singularly perturbed differential equations of convection diffusion type with integral boundary condition. An accelerated uniformly convergent numerical method is constructed via exponentially fitted operator method using Richardson extrapolation techniques and numerical integration methods to solve the problem. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be - uniformly convergent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信