{"title":"研究硅内激光写入一维光子晶体的潜力","authors":"O. Tokel","doi":"10.55730/1300-0101.2720","DOIUrl":null,"url":null,"abstract":"The field of silicon photonics is based on introducing and exploiting advanced optical functionality. Current efforts in the field are based on conventional micro/nanofabrication methods, leading to optical functionality over wafer surfaces. A complementary and emerging field is introducing analogous optics directly within the wafer using lasers. Here we investigate the theoretical feasibility of a subclass of such optics, photonic crystals. Our efforts will guide future experimental efforts towards in-chip spectral control.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the potential of laser-written one-dimensional photonic crystals inside silicon\",\"authors\":\"O. Tokel\",\"doi\":\"10.55730/1300-0101.2720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of silicon photonics is based on introducing and exploiting advanced optical functionality. Current efforts in the field are based on conventional micro/nanofabrication methods, leading to optical functionality over wafer surfaces. A complementary and emerging field is introducing analogous optics directly within the wafer using lasers. Here we investigate the theoretical feasibility of a subclass of such optics, photonic crystals. Our efforts will guide future experimental efforts towards in-chip spectral control.\",\"PeriodicalId\":46003,\"journal\":{\"name\":\"Turkish Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0101.2720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0101.2720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the potential of laser-written one-dimensional photonic crystals inside silicon
The field of silicon photonics is based on introducing and exploiting advanced optical functionality. Current efforts in the field are based on conventional micro/nanofabrication methods, leading to optical functionality over wafer surfaces. A complementary and emerging field is introducing analogous optics directly within the wafer using lasers. Here we investigate the theoretical feasibility of a subclass of such optics, photonic crystals. Our efforts will guide future experimental efforts towards in-chip spectral control.
期刊介绍:
The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.