{"title":"半平面上绝对收敛Dirichlet级数和的全局估计","authors":"P. Filevych, O. B. Hrybel","doi":"10.30970/ms.59.1.60-67","DOIUrl":null,"url":null,"abstract":"Let $(\\lambda_n)_{n=0}^{+\\infty}$ be a nonnegative sequence increasing to $+\\infty$, $F(s)=\\sum_{n=0}^{+\\infty} a_ne^{s\\lambda_n}$ be an absolutely convergent Dirichlet series in the half-plane $\\{s\\in\\mathbb{C}\\colon \\operatorname{Re} s<0\\}$, and let, for every $\\sigma<0$, $\\mathfrak{M}(\\sigma,F)=\\sum_{n=0}^{+\\infty} |a_n|e^{\\sigma\\lambda_n}$. \nSuppose that $\\Phi\\colon (-\\infty,0)\\to\\overline{\\mathbb{R}}$ is a function, and let $\\widetilde{\\Phi}(x)$ be the Young-conjugate function of $\\Phi(\\sigma)$, i.e.$\\widetilde{\\Phi}(x)=\\sup\\{x\\sigma-\\alpha(\\sigma)\\colon \\sigma<0\\}$ for all $x\\in\\mathbb{R}$. In the article, the following two statements are proved: \n(i) There exist constants $\\theta\\in(0,1)$ and $C\\in\\mathbb{R}$ such that$\\ln\\mathfrak{M}(\\sigma,F)\\le\\Phi(\\theta\\sigma)+C$ for all $\\sigma<0$ if and only if there exist constants $\\delta\\in(0, 1)$ and $c\\in\\mathbb{R}$ such that $\\ln\\sum_{m=0}^n|a_m|\\le-\\widetilde{\\Phi}(\\lambda_n/\\delta)+c$ for all integers $n\\ge0$ (Theorem 2); \n(ii) For every $\\theta\\in(0,1)$ there exists a real constant $C=C(\\delta)$ such that $\\ln\\mathfrak{M}(\\sigma,F)\\le\\Phi( \\theta\\sigma)+C$ for all $\\sigma<0$ if and only if for every $\\delta\\in(0,1)$ there exists a real constant $c=c(\\delta)$ such that $\\ln\\sum_{m=0}^n|a_m|\\le-\\widetilde{\\Phi}(\\lambda_n/\\delta)+c$ for all integers $n\\ge0$ (Theorem 3).iii) Let $\\Phi$ be a continuous positive increasing function on $\\mathbb{R}$ such that $\\Phi(\\sigma)/\\sigma\\to+\\infty$, $\\sigma\\to+ \\infty$ and $F$ be a entire Dirichlet series. \nFor every $q>1$ there exists a constant $C=C(q)\\in\\mathbb{R}$ such that $\\ln\\mathfrak{M}(\\sigma,F)\\le \\Phi(q\\sigma)+C,\\quad \\sigma\\in\\mathbb{R},$ holds if and only if for every $\\delta \\in(0,1)$ there exist constants $c=c(\\delta)\\in\\mathbb{R}$ and $n_0=n_0(\\delta)\\in\\mathbb{N}_0$ such that $\\ln \\sum_{m=n}^{+\\infty}|a_m|\\le-\\widetilde{\\Phi}(\\delta\\lambda_n)+c,\\quad n\\ge n_0$ Theorem 5. \nThese results are analogous to some results previously obtained by M.M. Sheremeta for entire Dirichlet series.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global estimates for sums of absolutely convergent Dirichlet series in a half-plane\",\"authors\":\"P. Filevych, O. B. Hrybel\",\"doi\":\"10.30970/ms.59.1.60-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(\\\\lambda_n)_{n=0}^{+\\\\infty}$ be a nonnegative sequence increasing to $+\\\\infty$, $F(s)=\\\\sum_{n=0}^{+\\\\infty} a_ne^{s\\\\lambda_n}$ be an absolutely convergent Dirichlet series in the half-plane $\\\\{s\\\\in\\\\mathbb{C}\\\\colon \\\\operatorname{Re} s<0\\\\}$, and let, for every $\\\\sigma<0$, $\\\\mathfrak{M}(\\\\sigma,F)=\\\\sum_{n=0}^{+\\\\infty} |a_n|e^{\\\\sigma\\\\lambda_n}$. \\nSuppose that $\\\\Phi\\\\colon (-\\\\infty,0)\\\\to\\\\overline{\\\\mathbb{R}}$ is a function, and let $\\\\widetilde{\\\\Phi}(x)$ be the Young-conjugate function of $\\\\Phi(\\\\sigma)$, i.e.$\\\\widetilde{\\\\Phi}(x)=\\\\sup\\\\{x\\\\sigma-\\\\alpha(\\\\sigma)\\\\colon \\\\sigma<0\\\\}$ for all $x\\\\in\\\\mathbb{R}$. In the article, the following two statements are proved: \\n(i) There exist constants $\\\\theta\\\\in(0,1)$ and $C\\\\in\\\\mathbb{R}$ such that$\\\\ln\\\\mathfrak{M}(\\\\sigma,F)\\\\le\\\\Phi(\\\\theta\\\\sigma)+C$ for all $\\\\sigma<0$ if and only if there exist constants $\\\\delta\\\\in(0, 1)$ and $c\\\\in\\\\mathbb{R}$ such that $\\\\ln\\\\sum_{m=0}^n|a_m|\\\\le-\\\\widetilde{\\\\Phi}(\\\\lambda_n/\\\\delta)+c$ for all integers $n\\\\ge0$ (Theorem 2); \\n(ii) For every $\\\\theta\\\\in(0,1)$ there exists a real constant $C=C(\\\\delta)$ such that $\\\\ln\\\\mathfrak{M}(\\\\sigma,F)\\\\le\\\\Phi( \\\\theta\\\\sigma)+C$ for all $\\\\sigma<0$ if and only if for every $\\\\delta\\\\in(0,1)$ there exists a real constant $c=c(\\\\delta)$ such that $\\\\ln\\\\sum_{m=0}^n|a_m|\\\\le-\\\\widetilde{\\\\Phi}(\\\\lambda_n/\\\\delta)+c$ for all integers $n\\\\ge0$ (Theorem 3).iii) Let $\\\\Phi$ be a continuous positive increasing function on $\\\\mathbb{R}$ such that $\\\\Phi(\\\\sigma)/\\\\sigma\\\\to+\\\\infty$, $\\\\sigma\\\\to+ \\\\infty$ and $F$ be a entire Dirichlet series. \\nFor every $q>1$ there exists a constant $C=C(q)\\\\in\\\\mathbb{R}$ such that $\\\\ln\\\\mathfrak{M}(\\\\sigma,F)\\\\le \\\\Phi(q\\\\sigma)+C,\\\\quad \\\\sigma\\\\in\\\\mathbb{R},$ holds if and only if for every $\\\\delta \\\\in(0,1)$ there exist constants $c=c(\\\\delta)\\\\in\\\\mathbb{R}$ and $n_0=n_0(\\\\delta)\\\\in\\\\mathbb{N}_0$ such that $\\\\ln \\\\sum_{m=n}^{+\\\\infty}|a_m|\\\\le-\\\\widetilde{\\\\Phi}(\\\\delta\\\\lambda_n)+c,\\\\quad n\\\\ge n_0$ Theorem 5. \\nThese results are analogous to some results previously obtained by M.M. Sheremeta for entire Dirichlet series.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.59.1.60-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.60-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Global estimates for sums of absolutely convergent Dirichlet series in a half-plane
Let $(\lambda_n)_{n=0}^{+\infty}$ be a nonnegative sequence increasing to $+\infty$, $F(s)=\sum_{n=0}^{+\infty} a_ne^{s\lambda_n}$ be an absolutely convergent Dirichlet series in the half-plane $\{s\in\mathbb{C}\colon \operatorname{Re} s<0\}$, and let, for every $\sigma<0$, $\mathfrak{M}(\sigma,F)=\sum_{n=0}^{+\infty} |a_n|e^{\sigma\lambda_n}$.
Suppose that $\Phi\colon (-\infty,0)\to\overline{\mathbb{R}}$ is a function, and let $\widetilde{\Phi}(x)$ be the Young-conjugate function of $\Phi(\sigma)$, i.e.$\widetilde{\Phi}(x)=\sup\{x\sigma-\alpha(\sigma)\colon \sigma<0\}$ for all $x\in\mathbb{R}$. In the article, the following two statements are proved:
(i) There exist constants $\theta\in(0,1)$ and $C\in\mathbb{R}$ such that$\ln\mathfrak{M}(\sigma,F)\le\Phi(\theta\sigma)+C$ for all $\sigma<0$ if and only if there exist constants $\delta\in(0, 1)$ and $c\in\mathbb{R}$ such that $\ln\sum_{m=0}^n|a_m|\le-\widetilde{\Phi}(\lambda_n/\delta)+c$ for all integers $n\ge0$ (Theorem 2);
(ii) For every $\theta\in(0,1)$ there exists a real constant $C=C(\delta)$ such that $\ln\mathfrak{M}(\sigma,F)\le\Phi( \theta\sigma)+C$ for all $\sigma<0$ if and only if for every $\delta\in(0,1)$ there exists a real constant $c=c(\delta)$ such that $\ln\sum_{m=0}^n|a_m|\le-\widetilde{\Phi}(\lambda_n/\delta)+c$ for all integers $n\ge0$ (Theorem 3).iii) Let $\Phi$ be a continuous positive increasing function on $\mathbb{R}$ such that $\Phi(\sigma)/\sigma\to+\infty$, $\sigma\to+ \infty$ and $F$ be a entire Dirichlet series.
For every $q>1$ there exists a constant $C=C(q)\in\mathbb{R}$ such that $\ln\mathfrak{M}(\sigma,F)\le \Phi(q\sigma)+C,\quad \sigma\in\mathbb{R},$ holds if and only if for every $\delta \in(0,1)$ there exist constants $c=c(\delta)\in\mathbb{R}$ and $n_0=n_0(\delta)\in\mathbb{N}_0$ such that $\ln \sum_{m=n}^{+\infty}|a_m|\le-\widetilde{\Phi}(\delta\lambda_n)+c,\quad n\ge n_0$ Theorem 5.
These results are analogous to some results previously obtained by M.M. Sheremeta for entire Dirichlet series.