不同平均温度下天然纤维绝缘材料热阻值的实验研究

IF 0.7 Q3 FORESTRY
Duong Hungh Anh Le, Z. Pásztory
{"title":"不同平均温度下天然纤维绝缘材料热阻值的实验研究","authors":"Duong Hungh Anh Le, Z. Pásztory","doi":"10.15177/seefor.23-03","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to experimentally study the thermal resistance (RSI value) of building insulation materials made mainly from natural fiber. Natural fibrous materials or renewable resources and their reinforcement composites are currently being used in building and construction as a potential solution to significantly reduce thermal load and energy consumption. The RSI value is used in describing the thermal efficiency of insulating material and in an analysis of heat transfer through the structural components of a building (such as walls, roofs, and windows) under steady-state conditions. In this study, the thermal resistance values of several samples made from coir fiber, rice straw fiber, energy reed fiber, and coconut wood were calculated from the thermal conductivity which was measured at mean temperature of 20°C, using the heat flow apparatus. The lowest RSI value was recorded in the phenol-formaldehyde polymer composites reinforced by rice straw fiber (0.115 m2·K·W-1) and coir fiber (0.128 m2·K·W-1) due to the relative thinness of the tested samples (8 and 12 mm). However, these samples can be used as an additional layer in multi-layered assemblies because of their low thermal conductivity value. The highest RSI value was reported on the binderless coir fiber panel (0.909 m2·K·W-1) at the thickness of 50 mm. Another investigation examined the relationship between RSI value and mean temperature to observe the influence of variations of ambient temperature on the heat resistivity of building insulation materials. Practical data showed the decreased linear proportion between thermal resistance and specific mean temperatures increased from 0 to 40°C. It is apparent that an increase in the interior and exterior temperature of a building significantly influences the thermal resistance of its insulation materials. Based on the experimental study, once the thermal conductivity coefficient of each sample was determined, the calculated RSI value was a valuable parameter to evaluate the thermal resistant effectiveness of a multi-layered installation, which allows us to investigate practically the effect of the thickness of additional layers from different insulating materials used in building envelopes.","PeriodicalId":54023,"journal":{"name":"SEEFOR-South-East European Forestry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Thermal Resistance Values of Natural Fiber Insulating Materials under Different Mean Temperatures\",\"authors\":\"Duong Hungh Anh Le, Z. Pásztory\",\"doi\":\"10.15177/seefor.23-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to experimentally study the thermal resistance (RSI value) of building insulation materials made mainly from natural fiber. Natural fibrous materials or renewable resources and their reinforcement composites are currently being used in building and construction as a potential solution to significantly reduce thermal load and energy consumption. The RSI value is used in describing the thermal efficiency of insulating material and in an analysis of heat transfer through the structural components of a building (such as walls, roofs, and windows) under steady-state conditions. In this study, the thermal resistance values of several samples made from coir fiber, rice straw fiber, energy reed fiber, and coconut wood were calculated from the thermal conductivity which was measured at mean temperature of 20°C, using the heat flow apparatus. The lowest RSI value was recorded in the phenol-formaldehyde polymer composites reinforced by rice straw fiber (0.115 m2·K·W-1) and coir fiber (0.128 m2·K·W-1) due to the relative thinness of the tested samples (8 and 12 mm). However, these samples can be used as an additional layer in multi-layered assemblies because of their low thermal conductivity value. The highest RSI value was reported on the binderless coir fiber panel (0.909 m2·K·W-1) at the thickness of 50 mm. Another investigation examined the relationship between RSI value and mean temperature to observe the influence of variations of ambient temperature on the heat resistivity of building insulation materials. Practical data showed the decreased linear proportion between thermal resistance and specific mean temperatures increased from 0 to 40°C. It is apparent that an increase in the interior and exterior temperature of a building significantly influences the thermal resistance of its insulation materials. Based on the experimental study, once the thermal conductivity coefficient of each sample was determined, the calculated RSI value was a valuable parameter to evaluate the thermal resistant effectiveness of a multi-layered installation, which allows us to investigate practically the effect of the thickness of additional layers from different insulating materials used in building envelopes.\",\"PeriodicalId\":54023,\"journal\":{\"name\":\"SEEFOR-South-East European Forestry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEEFOR-South-East European Forestry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15177/seefor.23-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEEFOR-South-East European Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15177/seefor.23-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是对以天然纤维为主的建筑保温材料的热阻(RSI值)进行实验研究。天然纤维材料或可再生资源及其增强复合材料目前正作为一种潜在的解决方案用于建筑和施工,以显着降低热负荷和能源消耗。RSI值用于描述隔热材料的热效率,以及在稳态条件下通过建筑物的结构部件(如墙壁、屋顶和窗户)进行热传递的分析。本研究利用热流仪在平均温度为20℃时测量的导热系数,计算了几种由椰子纤维、稻草纤维、能量芦苇纤维和椰子木制成的样品的热阻值。稻秆纤维增强的酚醛聚合物复合材料(0.115 m2·K·W-1)和椰壳纤维增强的酚醛聚合物复合材料(0.128 m2·K·W-1)的RSI值最低,这是由于测试样品相对较薄(8和12 mm)。然而,这些样品可以用作多层组件中的附加层,因为它们的导热系数低。无粘结剂的椰壳纤维板在厚度为50 mm时的RSI值最高(0.909 m2·K·W-1)。另一项研究考察了RSI值与平均温度之间的关系,以观察环境温度的变化对建筑保温材料热阻的影响。实际数据表明,在0 ~ 40℃范围内,热阻与比平均温度之间的线性比例减小。很明显,建筑物内外温度的升高会显著影响其保温材料的热阻。在实验研究的基础上,一旦确定了每个样品的导热系数,计算出的RSI值就成为评估多层装置的热阻有效性的一个有价值的参数,这使我们能够实际研究建筑围护结构中使用的不同保温材料的附加层厚度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Thermal Resistance Values of Natural Fiber Insulating Materials under Different Mean Temperatures
The purpose of this paper is to experimentally study the thermal resistance (RSI value) of building insulation materials made mainly from natural fiber. Natural fibrous materials or renewable resources and their reinforcement composites are currently being used in building and construction as a potential solution to significantly reduce thermal load and energy consumption. The RSI value is used in describing the thermal efficiency of insulating material and in an analysis of heat transfer through the structural components of a building (such as walls, roofs, and windows) under steady-state conditions. In this study, the thermal resistance values of several samples made from coir fiber, rice straw fiber, energy reed fiber, and coconut wood were calculated from the thermal conductivity which was measured at mean temperature of 20°C, using the heat flow apparatus. The lowest RSI value was recorded in the phenol-formaldehyde polymer composites reinforced by rice straw fiber (0.115 m2·K·W-1) and coir fiber (0.128 m2·K·W-1) due to the relative thinness of the tested samples (8 and 12 mm). However, these samples can be used as an additional layer in multi-layered assemblies because of their low thermal conductivity value. The highest RSI value was reported on the binderless coir fiber panel (0.909 m2·K·W-1) at the thickness of 50 mm. Another investigation examined the relationship between RSI value and mean temperature to observe the influence of variations of ambient temperature on the heat resistivity of building insulation materials. Practical data showed the decreased linear proportion between thermal resistance and specific mean temperatures increased from 0 to 40°C. It is apparent that an increase in the interior and exterior temperature of a building significantly influences the thermal resistance of its insulation materials. Based on the experimental study, once the thermal conductivity coefficient of each sample was determined, the calculated RSI value was a valuable parameter to evaluate the thermal resistant effectiveness of a multi-layered installation, which allows us to investigate practically the effect of the thickness of additional layers from different insulating materials used in building envelopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
6
审稿时长
8 weeks
期刊介绍: The primary aim of the SEEFOR journal is to publish original, novel and quality articles and thus contribute to the development of scientific, research, operational and other activities in the field of forestry. Besides scientific, the objectives of the SEEFOR are educational and informative as well. SEEFOR should stimulate intensive professional and academic work, teaching, as well as physical cooperation of institutions and interdisciplinary collaboration, a faster ascendance and affirmation of young scientific personnel. SEEFOR should contribute to the stronger cooperation between the science, practice and society, and to the overall dissemination of the forestry way-of thinking. The scope of the journal’s interests encompasses all ecological, economical, technical, technological, social and other aspects of forestry and wood technology. The journal is open for publishing research from all geographical zones and study locations, whether they are conducted in natural forests, plantations or urban environments, as long as methods used in the research and obtained results are of high interest and importance to South-east European and international forestry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信