有限温度下扩展Cornell势的束缚态解Schrödinger方程

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS
A. Ahmadov, K. H. Abasova, M. Orucova
{"title":"有限温度下扩展Cornell势的束缚态解Schrödinger方程","authors":"A. Ahmadov, K. H. Abasova, M. Orucova","doi":"10.1155/2021/1861946","DOIUrl":null,"url":null,"abstract":"In this paper, we study the finite temperature-dependent Schrödinger equation by using the Nikiforov-Uvarov method. We consider the sum of the Cornell, inverse quadratic, and harmonic-type potentials as the potential part of the radial Schrödinger equation. Analytical expressions for the energy eigenvalues and the radial wave function are presented. Application of the results for the heavy quarkonia and \n \n \n \n B\n \n \n c\n \n \n \n meson masses are in good agreement with the current experimental data except for zero angular momentum quantum numbers. Numerical results for the temperature dependence indicates a different behaviour for different quantum numbers. Temperature-dependent results are in agreement with some QCD sum rule results from the ground states.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"2021 1","pages":"1-13"},"PeriodicalIF":1.5000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bound State Solution Schrödinger Equation for Extended Cornell Potential at Finite Temperature\",\"authors\":\"A. Ahmadov, K. H. Abasova, M. Orucova\",\"doi\":\"10.1155/2021/1861946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the finite temperature-dependent Schrödinger equation by using the Nikiforov-Uvarov method. We consider the sum of the Cornell, inverse quadratic, and harmonic-type potentials as the potential part of the radial Schrödinger equation. Analytical expressions for the energy eigenvalues and the radial wave function are presented. Application of the results for the heavy quarkonia and \\n \\n \\n \\n B\\n \\n \\n c\\n \\n \\n \\n meson masses are in good agreement with the current experimental data except for zero angular momentum quantum numbers. Numerical results for the temperature dependence indicates a different behaviour for different quantum numbers. Temperature-dependent results are in agreement with some QCD sum rule results from the ground states.\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\"2021 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/1861946\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/1861946","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 9

摘要

本文采用Nikiforov-Uvarov方法研究了有限温度相关Schrödinger方程。我们考虑康奈尔势、逆二次势和谐波型势的总和作为径向Schrödinger方程的势部分。给出了能量特征值和径向波函数的解析表达式。对重夸子和bc介子质量的应用结果除角动量量子数为零外,与现有实验数据基本一致。温度依赖性的数值结果表明,不同的量子数有不同的行为。温度相关的结果与基态的一些QCD求和规则结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bound State Solution Schrödinger Equation for Extended Cornell Potential at Finite Temperature
In this paper, we study the finite temperature-dependent Schrödinger equation by using the Nikiforov-Uvarov method. We consider the sum of the Cornell, inverse quadratic, and harmonic-type potentials as the potential part of the radial Schrödinger equation. Analytical expressions for the energy eigenvalues and the radial wave function are presented. Application of the results for the heavy quarkonia and B c meson masses are in good agreement with the current experimental data except for zero angular momentum quantum numbers. Numerical results for the temperature dependence indicates a different behaviour for different quantum numbers. Temperature-dependent results are in agreement with some QCD sum rule results from the ground states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信