Dirk Wijnker, Tom van Dijk, M. Snellen, G. de Croon, C. De Wagter
{"title":"使用卷积神经网络的无人飞行器听和避","authors":"Dirk Wijnker, Tom van Dijk, M. Snellen, G. de Croon, C. De Wagter","doi":"10.1177/1756829321992137","DOIUrl":null,"url":null,"abstract":"To investigate how an unmanned air vehicle can detect manned aircraft with a single microphone, an audio data set is created in which unmanned air vehicle ego-sound and recorded aircraft sound are mixed together. A convolutional neural network is used to perform air traffic detection. Due to restrictions on flying unmanned air vehicles close to aircraft, the data set has to be artificially produced, so the unmanned air vehicle sound is captured separately from the aircraft sound. They are then mixed with unmanned air vehicle recordings, during which labels are given indicating whether the mixed recording contains aircraft audio or not. The model is a convolutional neural network that uses the features Mel frequency cepstral coefficient, spectrogram or Mel spectrogram as input. For each feature, the effect of unmanned air vehicle/aircraft amplitude ratio, the type of labeling, the window length and the addition of third party aircraft sound database recordings are explored. The results show that the best performance is achieved using the Mel spectrogram feature. The performance increases when the unmanned air vehicle/aircraft amplitude ratio is decreased, when the time window is increased or when the data set is extended with aircraft audio recordings from a third party sound database. Although the currently presented approach has a number of false positives and false negatives that is still too high for real-world application, this study indicates multiple paths forward that can lead to an interesting performance. Finally, the data set is provided as open access.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829321992137","citationCount":"2","resultStr":"{\"title\":\"Hear-and-avoid for unmanned air vehicles using convolutional neural networks\",\"authors\":\"Dirk Wijnker, Tom van Dijk, M. Snellen, G. de Croon, C. De Wagter\",\"doi\":\"10.1177/1756829321992137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate how an unmanned air vehicle can detect manned aircraft with a single microphone, an audio data set is created in which unmanned air vehicle ego-sound and recorded aircraft sound are mixed together. A convolutional neural network is used to perform air traffic detection. Due to restrictions on flying unmanned air vehicles close to aircraft, the data set has to be artificially produced, so the unmanned air vehicle sound is captured separately from the aircraft sound. They are then mixed with unmanned air vehicle recordings, during which labels are given indicating whether the mixed recording contains aircraft audio or not. The model is a convolutional neural network that uses the features Mel frequency cepstral coefficient, spectrogram or Mel spectrogram as input. For each feature, the effect of unmanned air vehicle/aircraft amplitude ratio, the type of labeling, the window length and the addition of third party aircraft sound database recordings are explored. The results show that the best performance is achieved using the Mel spectrogram feature. The performance increases when the unmanned air vehicle/aircraft amplitude ratio is decreased, when the time window is increased or when the data set is extended with aircraft audio recordings from a third party sound database. Although the currently presented approach has a number of false positives and false negatives that is still too high for real-world application, this study indicates multiple paths forward that can lead to an interesting performance. Finally, the data set is provided as open access.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756829321992137\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756829321992137\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829321992137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hear-and-avoid for unmanned air vehicles using convolutional neural networks
To investigate how an unmanned air vehicle can detect manned aircraft with a single microphone, an audio data set is created in which unmanned air vehicle ego-sound and recorded aircraft sound are mixed together. A convolutional neural network is used to perform air traffic detection. Due to restrictions on flying unmanned air vehicles close to aircraft, the data set has to be artificially produced, so the unmanned air vehicle sound is captured separately from the aircraft sound. They are then mixed with unmanned air vehicle recordings, during which labels are given indicating whether the mixed recording contains aircraft audio or not. The model is a convolutional neural network that uses the features Mel frequency cepstral coefficient, spectrogram or Mel spectrogram as input. For each feature, the effect of unmanned air vehicle/aircraft amplitude ratio, the type of labeling, the window length and the addition of third party aircraft sound database recordings are explored. The results show that the best performance is achieved using the Mel spectrogram feature. The performance increases when the unmanned air vehicle/aircraft amplitude ratio is decreased, when the time window is increased or when the data set is extended with aircraft audio recordings from a third party sound database. Although the currently presented approach has a number of false positives and false negatives that is still too high for real-world application, this study indicates multiple paths forward that can lead to an interesting performance. Finally, the data set is provided as open access.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.