表示稳定性与有限正交群

Pub Date : 2023-03-29 DOI:10.1007/s10468-023-10202-4
Arun S. Kannan, Zifan Wang
{"title":"表示稳定性与有限正交群","authors":"Arun S. Kannan,&nbsp;Zifan Wang","doi":"10.1007/s10468-023-10202-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove homological stability results about orthogonal groups over finite commutative rings where 2 is a unit. Inspired by Putman and Sam (2017), we construct a category <b>OrI</b>(<i>R</i>) and prove a local Noetherianity theorem for the category of <b>OrI</b>(<i>R</i>)-modules. This implies an asymptotic structure theorem for orthogonal groups. In addition, we show general homological stability theorems for orthogonal groups, with both untwisted and twisted coefficients.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-023-10202-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Representation Stability and Finite Orthogonal Groups\",\"authors\":\"Arun S. Kannan,&nbsp;Zifan Wang\",\"doi\":\"10.1007/s10468-023-10202-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove homological stability results about orthogonal groups over finite commutative rings where 2 is a unit. Inspired by Putman and Sam (2017), we construct a category <b>OrI</b>(<i>R</i>) and prove a local Noetherianity theorem for the category of <b>OrI</b>(<i>R</i>)-modules. This implies an asymptotic structure theorem for orthogonal groups. In addition, we show general homological stability theorems for orthogonal groups, with both untwisted and twisted coefficients.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-023-10202-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10202-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10202-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了有限交换环上正交群的同调稳定性结果,其中 2 是一个单位。受 Putman 和 Sam (2017) 的启发,我们构建了一个 OrI(R) 范畴,并证明了 OrI(R) 模块范畴的局部 Noetherianity 定理。这意味着正交群的渐近结构定理。此外,我们还展示了具有非扭曲系数和扭曲系数的正交群的一般同调稳定性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Representation Stability and Finite Orthogonal Groups

In this paper, we prove homological stability results about orthogonal groups over finite commutative rings where 2 is a unit. Inspired by Putman and Sam (2017), we construct a category OrI(R) and prove a local Noetherianity theorem for the category of OrI(R)-modules. This implies an asymptotic structure theorem for orthogonal groups. In addition, we show general homological stability theorems for orthogonal groups, with both untwisted and twisted coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信