结合密集连接块和自注意机制的腺细胞分割方法

Q3 Computer Science
Baoqi Zhao, Fei Yu, Junmei Sun, Xiumei Li, L. Yuan, Lei Xiao
{"title":"结合密集连接块和自注意机制的腺细胞分割方法","authors":"Baoqi Zhao, Fei Yu, Junmei Sun, Xiumei Li, L. Yuan, Lei Xiao","doi":"10.3724/sp.j.1089.2021.18625","DOIUrl":null,"url":null,"abstract":"Currently used cell segmentation methods are easily to cause the problem of missegmentation and impreciseness for glandular cell segmentation. A glandular cell segmentation model based on U-Net network is proposed which combines dense connective blocks and self-attention mechanism. Firstly, the convolution layers in the U-Net structure are combined to form the dense connective blocks, so that the information can be extracted from the image at different scales. Then the self-attention mechanism is introduced at the decoder to establish a rich context-dependent model for local features to suppress unnecessary feature propagation and improve the accuracy of glandular cell segmentation. The experimental results on the 2015 MICCAI Gland Segmentation Challenge dataset show that the proposed model, with a small number of extra parameters, can achieve improved performance in terms of F1-score, Mean Dice coefficient, and Hausdorff distance compared with other U-Net based methods.","PeriodicalId":52442,"journal":{"name":"计算机辅助设计与图形学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glandular Cell Segmentation Method Combined with Dense Connective Blocks and Self-Attention Mechanism\",\"authors\":\"Baoqi Zhao, Fei Yu, Junmei Sun, Xiumei Li, L. Yuan, Lei Xiao\",\"doi\":\"10.3724/sp.j.1089.2021.18625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently used cell segmentation methods are easily to cause the problem of missegmentation and impreciseness for glandular cell segmentation. A glandular cell segmentation model based on U-Net network is proposed which combines dense connective blocks and self-attention mechanism. Firstly, the convolution layers in the U-Net structure are combined to form the dense connective blocks, so that the information can be extracted from the image at different scales. Then the self-attention mechanism is introduced at the decoder to establish a rich context-dependent model for local features to suppress unnecessary feature propagation and improve the accuracy of glandular cell segmentation. The experimental results on the 2015 MICCAI Gland Segmentation Challenge dataset show that the proposed model, with a small number of extra parameters, can achieve improved performance in terms of F1-score, Mean Dice coefficient, and Hausdorff distance compared with other U-Net based methods.\",\"PeriodicalId\":52442,\"journal\":{\"name\":\"计算机辅助设计与图形学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机辅助设计与图形学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/sp.j.1089.2021.18625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机辅助设计与图形学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/sp.j.1089.2021.18625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

目前使用的细胞分割方法很容易造成腺细胞分割的分割不准确和分割不准确的问题。结合密集连接块和自注意机制,提出了一种基于U-Net网络的腺细胞分割模型。首先,将U-Net结构中的卷积层组合起来形成密集的连接块,从而可以从不同尺度的图像中提取信息。然后在解码器处引入自注意机制,为局部特征建立一个丰富的上下文相关模型,以抑制不必要的特征传播,提高腺细胞分割的准确性。在2015年MICCAI Gland Segmentation Challenge数据集上的实验结果表明,与其他基于U-Net的方法相比,所提出的模型在F1分数、Mean Dice系数和Hausdorff距离方面具有更好的性能,只需少量的额外参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glandular Cell Segmentation Method Combined with Dense Connective Blocks and Self-Attention Mechanism
Currently used cell segmentation methods are easily to cause the problem of missegmentation and impreciseness for glandular cell segmentation. A glandular cell segmentation model based on U-Net network is proposed which combines dense connective blocks and self-attention mechanism. Firstly, the convolution layers in the U-Net structure are combined to form the dense connective blocks, so that the information can be extracted from the image at different scales. Then the self-attention mechanism is introduced at the decoder to establish a rich context-dependent model for local features to suppress unnecessary feature propagation and improve the accuracy of glandular cell segmentation. The experimental results on the 2015 MICCAI Gland Segmentation Challenge dataset show that the proposed model, with a small number of extra parameters, can achieve improved performance in terms of F1-score, Mean Dice coefficient, and Hausdorff distance compared with other U-Net based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
计算机辅助设计与图形学学报
计算机辅助设计与图形学学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6833
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信