Luca Grosso, Andrea De Martin, G. Jacazio, M. Sorli
{"title":"汽车生产线机器人卷边数据驱动PHM解决方案的开发","authors":"Luca Grosso, Andrea De Martin, G. Jacazio, M. Sorli","doi":"10.36001/IJPHM.2020.V11I1.2591","DOIUrl":null,"url":null,"abstract":"Robotic roller hemming is currently one of the most used solution for joining metal sheets in automotive industry, especially for those production lines which need to favor flexibility with respect to raw productivity and is mostly employed to assemble car doors. Hemming is a fairly delicate process since it does not only suffice a technical requirement – to join two panels together – but also an aesthetical one, since the joint panels are an integral part of the vehicle design and as such an important selling point. An unpredicted rupture or an advanced degradation condition of the system would lead to a significant loss in the quality of the final product or to a sudden stoppage of the production line. The development of a PHM system for hemming devices would hence provide a significant advantage, especially if designed to work for both new and legacy equipment. In this paper, we provide the results of a preliminary analysis of a new PHM framework for robotic roller hemming studied to work without having access to PLC data, the employed data-driven methodology is detailed and applied to the case of increasing wear in the head finger roll. Results from different prognostics routines are hence presented and compared.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Development of data-driven PHM solutions for robot hemming in automotive production lines\",\"authors\":\"Luca Grosso, Andrea De Martin, G. Jacazio, M. Sorli\",\"doi\":\"10.36001/IJPHM.2020.V11I1.2591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic roller hemming is currently one of the most used solution for joining metal sheets in automotive industry, especially for those production lines which need to favor flexibility with respect to raw productivity and is mostly employed to assemble car doors. Hemming is a fairly delicate process since it does not only suffice a technical requirement – to join two panels together – but also an aesthetical one, since the joint panels are an integral part of the vehicle design and as such an important selling point. An unpredicted rupture or an advanced degradation condition of the system would lead to a significant loss in the quality of the final product or to a sudden stoppage of the production line. The development of a PHM system for hemming devices would hence provide a significant advantage, especially if designed to work for both new and legacy equipment. In this paper, we provide the results of a preliminary analysis of a new PHM framework for robotic roller hemming studied to work without having access to PLC data, the employed data-driven methodology is detailed and applied to the case of increasing wear in the head finger roll. Results from different prognostics routines are hence presented and compared.\",\"PeriodicalId\":42100,\"journal\":{\"name\":\"International Journal of Prognostics and Health Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Prognostics and Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/IJPHM.2020.V11I1.2591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/IJPHM.2020.V11I1.2591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of data-driven PHM solutions for robot hemming in automotive production lines
Robotic roller hemming is currently one of the most used solution for joining metal sheets in automotive industry, especially for those production lines which need to favor flexibility with respect to raw productivity and is mostly employed to assemble car doors. Hemming is a fairly delicate process since it does not only suffice a technical requirement – to join two panels together – but also an aesthetical one, since the joint panels are an integral part of the vehicle design and as such an important selling point. An unpredicted rupture or an advanced degradation condition of the system would lead to a significant loss in the quality of the final product or to a sudden stoppage of the production line. The development of a PHM system for hemming devices would hence provide a significant advantage, especially if designed to work for both new and legacy equipment. In this paper, we provide the results of a preliminary analysis of a new PHM framework for robotic roller hemming studied to work without having access to PLC data, the employed data-driven methodology is detailed and applied to the case of increasing wear in the head finger roll. Results from different prognostics routines are hence presented and compared.