保留各种Lipschitz常数的加权复合算子

IF 0.4 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ching-Jou Liao, Chih-Neng Liu, Jung-Hui Liu, N. Wong
{"title":"保留各种Lipschitz常数的加权复合算子","authors":"Ching-Jou Liao, Chih-Neng Liu, Jung-Hui Liu, N. Wong","doi":"10.4310/amsa.2023.v8.n2.a4","DOIUrl":null,"url":null,"abstract":"Let $\\mathrm{Lip}(X)$, $\\mathrm{Lip}^b(X)$, $\\mathrm{Lip}^{\\mathrm{loc}}(X)$ and $\\mathrm{Lip}^\\mathrm{pt}(X)$ be the vector spaces of Lipschitz, bounded Lipschitz, locally Lipschitz and pointwise Lipschitz (real-valued) functions defined on a metric space $(X, d_X)$, respectively. We show that if a weighted composition operator $Tf=h\\cdot f\\circ \\varphi$ defines a bijection between such vector spaces preserving Lipschitz constants, local Lipschitz constants or pointwise Lipschitz constants, then $h= \\pm1/\\alpha$ is a constant function for some scalar $\\alpha>0$ and $\\varphi$ is an $\\alpha$-dilation. Let $U$ be open connected and $V$ be open, or both $U,V$ are convex bodies, in normed linear spaces $E, F$, respectively. Let $Tf=h\\cdot f\\circ\\varphi$ be a bijective weighed composition operator between the vector spaces $\\mathrm{Lip}(U)$ and $\\mathrm{Lip}(V)$, $\\mathrm{Lip}^b(U)$ and $\\mathrm{Lip}^b(V)$, $\\mathrm{Lip}^\\mathrm{loc}(U)$ and $\\mathrm{Lip}^\\mathrm{loc}(V)$, or $\\mathrm{Lip}^\\mathrm{pt}(U)$ and $\\mathrm{Lip}^\\mathrm{pt}(V)$, preserving the Lipschitz, locally Lipschitz, or pointwise Lipschitz constants, respectively. We show that there is a linear isometry $A: F\\to E$, an $\\alpha>0$ and a vector $b\\in E$ such that $\\varphi(x)=\\alpha Ax + b$, and $h$ is a constant function assuming value $\\pm 1/\\alpha$. More concrete results are obtained for the special cases when $E=F=\\mathbb{R}^n$, or when $U,V$ are $n$-dimensional flat manifolds.","PeriodicalId":42896,"journal":{"name":"Annals of Mathematical Sciences and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted composition operators preserving various Lipschitz constants\",\"authors\":\"Ching-Jou Liao, Chih-Neng Liu, Jung-Hui Liu, N. Wong\",\"doi\":\"10.4310/amsa.2023.v8.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathrm{Lip}(X)$, $\\\\mathrm{Lip}^b(X)$, $\\\\mathrm{Lip}^{\\\\mathrm{loc}}(X)$ and $\\\\mathrm{Lip}^\\\\mathrm{pt}(X)$ be the vector spaces of Lipschitz, bounded Lipschitz, locally Lipschitz and pointwise Lipschitz (real-valued) functions defined on a metric space $(X, d_X)$, respectively. We show that if a weighted composition operator $Tf=h\\\\cdot f\\\\circ \\\\varphi$ defines a bijection between such vector spaces preserving Lipschitz constants, local Lipschitz constants or pointwise Lipschitz constants, then $h= \\\\pm1/\\\\alpha$ is a constant function for some scalar $\\\\alpha>0$ and $\\\\varphi$ is an $\\\\alpha$-dilation. Let $U$ be open connected and $V$ be open, or both $U,V$ are convex bodies, in normed linear spaces $E, F$, respectively. Let $Tf=h\\\\cdot f\\\\circ\\\\varphi$ be a bijective weighed composition operator between the vector spaces $\\\\mathrm{Lip}(U)$ and $\\\\mathrm{Lip}(V)$, $\\\\mathrm{Lip}^b(U)$ and $\\\\mathrm{Lip}^b(V)$, $\\\\mathrm{Lip}^\\\\mathrm{loc}(U)$ and $\\\\mathrm{Lip}^\\\\mathrm{loc}(V)$, or $\\\\mathrm{Lip}^\\\\mathrm{pt}(U)$ and $\\\\mathrm{Lip}^\\\\mathrm{pt}(V)$, preserving the Lipschitz, locally Lipschitz, or pointwise Lipschitz constants, respectively. We show that there is a linear isometry $A: F\\\\to E$, an $\\\\alpha>0$ and a vector $b\\\\in E$ such that $\\\\varphi(x)=\\\\alpha Ax + b$, and $h$ is a constant function assuming value $\\\\pm 1/\\\\alpha$. More concrete results are obtained for the special cases when $E=F=\\\\mathbb{R}^n$, or when $U,V$ are $n$-dimensional flat manifolds.\",\"PeriodicalId\":42896,\"journal\":{\"name\":\"Annals of Mathematical Sciences and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/amsa.2023.v8.n2.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/amsa.2023.v8.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

设$\mathrm{Lip}(X)$, $\mathrm{Lip}^b(X)$, $\mathrm{Lip}^{\mathrm{loc}}(X)$和$\mathrm{Lip}^\mathrm{pt}(X)$分别为定义在度量空间$(X, d_X)$上的Lipschitz,有界Lipschitz,局部Lipschitz和点向Lipschitz(实值)函数的向量空间。我们证明了如果一个加权复合算子$Tf=h\cdot f\circ \varphi$定义了这样的矢量空间之间的双射,保持Lipschitz常数,局部Lipschitz常数或点向Lipschitz常数,那么$h= \pm1/\alpha$是某个标量$\alpha>0$的常数函数,$\varphi$是$\alpha$ -膨胀。设$U$是开连通的,$V$是开连通的,或者两者$U,V$都是凸体,分别在赋范线性空间$E, F$中。设$Tf=h\cdot f\circ\varphi$为向量空间$\mathrm{Lip}(U)$和$\mathrm{Lip}(V)$、$\mathrm{Lip}^b(U)$和$\mathrm{Lip}^b(V)$、$\mathrm{Lip}^\mathrm{loc}(U)$和$\mathrm{Lip}^\mathrm{loc}(V)$、$\mathrm{Lip}^\mathrm{pt}(U)$和$\mathrm{Lip}^\mathrm{pt}(V)$之间的双射加权复合算子,分别保留Lipschitz常数、局部Lipschitz常数和点向Lipschitz常数。我们证明存在一个线性等距$A: F\to E$,一个$\alpha>0$和一个矢量$b\in E$,使得$\varphi(x)=\alpha Ax + b$,并且$h$是一个常数函数,假设值为$\pm 1/\alpha$。对于$E=F=\mathbb{R}^n$或$U,V$为$n$维平面流形的特殊情况,可以得到更具体的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted composition operators preserving various Lipschitz constants
Let $\mathrm{Lip}(X)$, $\mathrm{Lip}^b(X)$, $\mathrm{Lip}^{\mathrm{loc}}(X)$ and $\mathrm{Lip}^\mathrm{pt}(X)$ be the vector spaces of Lipschitz, bounded Lipschitz, locally Lipschitz and pointwise Lipschitz (real-valued) functions defined on a metric space $(X, d_X)$, respectively. We show that if a weighted composition operator $Tf=h\cdot f\circ \varphi$ defines a bijection between such vector spaces preserving Lipschitz constants, local Lipschitz constants or pointwise Lipschitz constants, then $h= \pm1/\alpha$ is a constant function for some scalar $\alpha>0$ and $\varphi$ is an $\alpha$-dilation. Let $U$ be open connected and $V$ be open, or both $U,V$ are convex bodies, in normed linear spaces $E, F$, respectively. Let $Tf=h\cdot f\circ\varphi$ be a bijective weighed composition operator between the vector spaces $\mathrm{Lip}(U)$ and $\mathrm{Lip}(V)$, $\mathrm{Lip}^b(U)$ and $\mathrm{Lip}^b(V)$, $\mathrm{Lip}^\mathrm{loc}(U)$ and $\mathrm{Lip}^\mathrm{loc}(V)$, or $\mathrm{Lip}^\mathrm{pt}(U)$ and $\mathrm{Lip}^\mathrm{pt}(V)$, preserving the Lipschitz, locally Lipschitz, or pointwise Lipschitz constants, respectively. We show that there is a linear isometry $A: F\to E$, an $\alpha>0$ and a vector $b\in E$ such that $\varphi(x)=\alpha Ax + b$, and $h$ is a constant function assuming value $\pm 1/\alpha$. More concrete results are obtained for the special cases when $E=F=\mathbb{R}^n$, or when $U,V$ are $n$-dimensional flat manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematical Sciences and Applications
Annals of Mathematical Sciences and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信