电子温度对等离子体行波形成的影响:动力学和流体动力学模型

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
E. V. Chizhonkov, A. A. Frolov
{"title":"电子温度对等离子体行波形成的影响:动力学和流体动力学模型","authors":"E. V. Chizhonkov, A. A. Frolov","doi":"10.1515/rnam-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract The kinetic formulation of the model problem of plasma waves excitation by a powerful short laser pulse is numerically studied for the first time. Kinetic and simplest hydrodynamic plasma models are also compared for the problem under consideration. It is shown that the considered hydrodynamic models do not provide good approximations to the solution to the Vlasov kinetic equation, namely, one leads to discontinuous solutions and the other has a significant qualitative distinction. At a low plasma temperature, the effect of non-isothermicity of the process is small, but it can lead to significant distortions of the solution during further heating. The results obtained here imply that the first two moments of the distribution function are not enough to describe the plasma hydrodynamics; higher-order moments should be used.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of electron temperature on formation of travelling waves in plasma: Kinetic and hydrodynamic models\",\"authors\":\"E. V. Chizhonkov, A. A. Frolov\",\"doi\":\"10.1515/rnam-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The kinetic formulation of the model problem of plasma waves excitation by a powerful short laser pulse is numerically studied for the first time. Kinetic and simplest hydrodynamic plasma models are also compared for the problem under consideration. It is shown that the considered hydrodynamic models do not provide good approximations to the solution to the Vlasov kinetic equation, namely, one leads to discontinuous solutions and the other has a significant qualitative distinction. At a low plasma temperature, the effect of non-isothermicity of the process is small, but it can lead to significant distortions of the solution during further heating. The results obtained here imply that the first two moments of the distribution function are not enough to describe the plasma hydrodynamics; higher-order moments should be used.\",\"PeriodicalId\":49585,\"journal\":{\"name\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2023-0006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2023-0006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要首次对强短激光脉冲激发等离子体波模型问题的动力学公式进行了数值研究。对于所考虑的问题,还比较了动力学等离子体模型和最简单的流体动力学等离子体模型。结果表明,所考虑的流体动力学模型不能很好地近似Vlasov动力学方程的解,即一个模型导致不连续解,另一个模型具有显著的定性差异。在较低的等离子体温度下,该过程的非等温性影响很小,但在进一步加热过程中会导致溶液的显著扭曲。所得结果表明,分布函数的前两个矩不足以描述等离子体流体力学;应使用高阶矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of electron temperature on formation of travelling waves in plasma: Kinetic and hydrodynamic models
Abstract The kinetic formulation of the model problem of plasma waves excitation by a powerful short laser pulse is numerically studied for the first time. Kinetic and simplest hydrodynamic plasma models are also compared for the problem under consideration. It is shown that the considered hydrodynamic models do not provide good approximations to the solution to the Vlasov kinetic equation, namely, one leads to discontinuous solutions and the other has a significant qualitative distinction. At a low plasma temperature, the effect of non-isothermicity of the process is small, but it can lead to significant distortions of the solution during further heating. The results obtained here imply that the first two moments of the distribution function are not enough to describe the plasma hydrodynamics; higher-order moments should be used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信