代数3 -折叠的Noether不等式

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. Chen, Meng Chen, Chen Jiang
{"title":"代数3 -折叠的Noether不等式","authors":"J. Chen, Meng Chen, Chen Jiang","doi":"10.1215/00127094-2019-0080","DOIUrl":null,"url":null,"abstract":"We establish the Noether inequality for projective $3$-folds. More precisely, we prove that the inequality $${\\rm vol}(X)\\geq \\tfrac{4}{3}p_g(X)-{\\tfrac{10}{3}}$$ holds for all projective $3$-folds $X$ of general type with either $p_g(X)\\leq 4$ or $p_g(X)\\geq 21$, where $p_g(X)$ is the geometric genus and ${\\rm vol}(X)$ is the canonical volume. This inequality is optimal due to known examples found by M. Kobayashi in 1992.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Noether inequality for algebraic 3 -folds\",\"authors\":\"J. Chen, Meng Chen, Chen Jiang\",\"doi\":\"10.1215/00127094-2019-0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the Noether inequality for projective $3$-folds. More precisely, we prove that the inequality $${\\\\rm vol}(X)\\\\geq \\\\tfrac{4}{3}p_g(X)-{\\\\tfrac{10}{3}}$$ holds for all projective $3$-folds $X$ of general type with either $p_g(X)\\\\leq 4$ or $p_g(X)\\\\geq 21$, where $p_g(X)$ is the geometric genus and ${\\\\rm vol}(X)$ is the canonical volume. This inequality is optimal due to known examples found by M. Kobayashi in 1992.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2019-0080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2019-0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

摘要

我们建立了投射$3$-折叠的Noether不等式。更准确地说,我们证明了不等式$${\rm-vol}(X)\geq\tfrac{4}{3}p_g(X) -{\tfrac{10}{3}}$$适用于所有具有$p_g(X)\leq 4$或$p_g(X)\geq 21$的一般类型的投影$3$-折叠$X$,其中$p_g是几何亏格,${\rm-vol}(X)$是规范体积。由于M.Kobayashi在1992年发现的已知例子,这个不等式是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Noether inequality for algebraic 3 -folds
We establish the Noether inequality for projective $3$-folds. More precisely, we prove that the inequality $${\rm vol}(X)\geq \tfrac{4}{3}p_g(X)-{\tfrac{10}{3}}$$ holds for all projective $3$-folds $X$ of general type with either $p_g(X)\leq 4$ or $p_g(X)\geq 21$, where $p_g(X)$ is the geometric genus and ${\rm vol}(X)$ is the canonical volume. This inequality is optimal due to known examples found by M. Kobayashi in 1992.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信