{"title":"广义仿射分形插值函数的盒维数","authors":"Lai Jiang, H. Ruan","doi":"10.4171/jfg/136","DOIUrl":null,"url":null,"abstract":"Let $f$ be a generalized affine fractal interpolation function with vertical scaling function $S$. In this paper, we study $\\dim_B \\Gamma f$, the box dimension of the graph of $f$, under the assumption that $S$ is a Lipschtz function. By introducing vertical scaling matrices, we estimate the upper bound and the lower bound of oscillations of $f$. As a result, we obtain explicit formula of $\\dim_B \\Gamma f$ under certain constraint conditions.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Box dimension of generalized affine fractal interpolation functions\",\"authors\":\"Lai Jiang, H. Ruan\",\"doi\":\"10.4171/jfg/136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f$ be a generalized affine fractal interpolation function with vertical scaling function $S$. In this paper, we study $\\\\dim_B \\\\Gamma f$, the box dimension of the graph of $f$, under the assumption that $S$ is a Lipschtz function. By introducing vertical scaling matrices, we estimate the upper bound and the lower bound of oscillations of $f$. As a result, we obtain explicit formula of $\\\\dim_B \\\\Gamma f$ under certain constraint conditions.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/136\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/136","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Box dimension of generalized affine fractal interpolation functions
Let $f$ be a generalized affine fractal interpolation function with vertical scaling function $S$. In this paper, we study $\dim_B \Gamma f$, the box dimension of the graph of $f$, under the assumption that $S$ is a Lipschtz function. By introducing vertical scaling matrices, we estimate the upper bound and the lower bound of oscillations of $f$. As a result, we obtain explicit formula of $\dim_B \Gamma f$ under certain constraint conditions.