进一步的次加性矩阵不等式

IF 0.9 4区 数学 Q2 MATHEMATICS
I. Gumus, H. Moradi, M. Sababheh
{"title":"进一步的次加性矩阵不等式","authors":"I. Gumus, H. Moradi, M. Sababheh","doi":"10.7153/mia-2020-23-86","DOIUrl":null,"url":null,"abstract":"Matrix inequalities that extend certain scalar ones have been in the center of numerous researchers' attention. In this article, we explore the celebrated subadditive inequality for matrices via concave functions and present a reversed version of this result. Our approach will be tackling concave functions properties and some delicate manipulations of matrices and inner product properties. Once this has been done, concavity approach is implemented to show many sub and super additive inequalities for the determinant. This approach is a new direction in this type of inequalities. In the end, many determinant inequalities are presented for accretive-dissipative matrices.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Further subadditive matrix inequalities\",\"authors\":\"I. Gumus, H. Moradi, M. Sababheh\",\"doi\":\"10.7153/mia-2020-23-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix inequalities that extend certain scalar ones have been in the center of numerous researchers' attention. In this article, we explore the celebrated subadditive inequality for matrices via concave functions and present a reversed version of this result. Our approach will be tackling concave functions properties and some delicate manipulations of matrices and inner product properties. Once this has been done, concavity approach is implemented to show many sub and super additive inequalities for the determinant. This approach is a new direction in this type of inequalities. In the end, many determinant inequalities are presented for accretive-dissipative matrices.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2020-23-86\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2020-23-86","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

扩展标量矩阵不等式的矩阵不等式一直是众多研究者关注的焦点。在本文中,我们通过凹函数探讨了著名的矩阵的次加性不等式,并给出了这个结果的一个相反的版本。我们的方法是处理凹函数的性质和一些矩阵和内积性质的微妙操作。一旦这样做了,就实现了凹性方法来显示行列式的许多子和上加性不等式。这种方法是研究这类不等式的一个新方向。最后,给出了许多累加-耗散矩阵的行列式不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further subadditive matrix inequalities
Matrix inequalities that extend certain scalar ones have been in the center of numerous researchers' attention. In this article, we explore the celebrated subadditive inequality for matrices via concave functions and present a reversed version of this result. Our approach will be tackling concave functions properties and some delicate manipulations of matrices and inner product properties. Once this has been done, concavity approach is implemented to show many sub and super additive inequalities for the determinant. This approach is a new direction in this type of inequalities. In the end, many determinant inequalities are presented for accretive-dissipative matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信