{"title":"空间趋化性蚊媒疾病模型的全局阈值动力学","authors":"Kai Wang, Hao Wang, Hongyong Zhao","doi":"10.1093/imamat/hxad009","DOIUrl":null,"url":null,"abstract":"\n It is natural that mosquitoes move toward high human population density and environmental heterogeneity plays a pivotal role on disease transmission, and thus we formulate and analyze a mosquito-borne disease model with chemotaxis and spatial heterogeneity. The global existence and boundedness of solutions are proven to guarantee the solvability of the model and is challenging due to the model complexity. Under appropriate conditions, we demonstrate the disease-free equilibrium is globally asymptotically stable provided that the basic reproduction number $\\mathcal {R}_0$ is less than one, and the system is uniformly persistent and admits at least one endemic equilibrium if $\\mathcal {R}_0$ is greater than one. Furthermore, we numerically explore the impacts of chemotactic effect, spatial heterogeneity and dispersal rates of infected individuals to provide a clear picture on disease severity. In particular, the mosquito chemotaxis causes disease mild in some regions but severe in others, which suggests developing targeted strategies to control mosquitoes in specific locations and achieves a deep understanding on the chemotaxis.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global threshold dynamics of a spatial chemotactic mosquito-borne disease model\",\"authors\":\"Kai Wang, Hao Wang, Hongyong Zhao\",\"doi\":\"10.1093/imamat/hxad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n It is natural that mosquitoes move toward high human population density and environmental heterogeneity plays a pivotal role on disease transmission, and thus we formulate and analyze a mosquito-borne disease model with chemotaxis and spatial heterogeneity. The global existence and boundedness of solutions are proven to guarantee the solvability of the model and is challenging due to the model complexity. Under appropriate conditions, we demonstrate the disease-free equilibrium is globally asymptotically stable provided that the basic reproduction number $\\\\mathcal {R}_0$ is less than one, and the system is uniformly persistent and admits at least one endemic equilibrium if $\\\\mathcal {R}_0$ is greater than one. Furthermore, we numerically explore the impacts of chemotactic effect, spatial heterogeneity and dispersal rates of infected individuals to provide a clear picture on disease severity. In particular, the mosquito chemotaxis causes disease mild in some regions but severe in others, which suggests developing targeted strategies to control mosquitoes in specific locations and achieves a deep understanding on the chemotaxis.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imamat/hxad009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxad009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global threshold dynamics of a spatial chemotactic mosquito-borne disease model
It is natural that mosquitoes move toward high human population density and environmental heterogeneity plays a pivotal role on disease transmission, and thus we formulate and analyze a mosquito-borne disease model with chemotaxis and spatial heterogeneity. The global existence and boundedness of solutions are proven to guarantee the solvability of the model and is challenging due to the model complexity. Under appropriate conditions, we demonstrate the disease-free equilibrium is globally asymptotically stable provided that the basic reproduction number $\mathcal {R}_0$ is less than one, and the system is uniformly persistent and admits at least one endemic equilibrium if $\mathcal {R}_0$ is greater than one. Furthermore, we numerically explore the impacts of chemotactic effect, spatial heterogeneity and dispersal rates of infected individuals to provide a clear picture on disease severity. In particular, the mosquito chemotaxis causes disease mild in some regions but severe in others, which suggests developing targeted strategies to control mosquitoes in specific locations and achieves a deep understanding on the chemotaxis.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.