pp波的非最小耦合、共形扩展的爱因斯坦-麦克斯韦理论

IF 1.4 Q3 PHYSICS, MULTIDISCIPLINARY
T. Dereli, Yorgo Şenikoğlu
{"title":"pp波的非最小耦合、共形扩展的爱因斯坦-麦克斯韦理论","authors":"T. Dereli, Yorgo Şenikoğlu","doi":"10.3906/fiz-2002-18","DOIUrl":null,"url":null,"abstract":"A non-minimal coupling of Weyl curvatures to electromagnetic fields is considered in Brans-Dicke-Maxwell theory. The gravitational field equations are formulated in a Riemannian spacetime where the spacetime torsion is constrained to zero by the method of Lagrange multipliers in the language of exterior differential forms. The significance and ramifications of non-minimal couplings to gravity are examined in a pp-wave spacetime.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A nonminimally coupled, conformally extended Einstein-Maxwell theory of pp-waves\",\"authors\":\"T. Dereli, Yorgo Şenikoğlu\",\"doi\":\"10.3906/fiz-2002-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-minimal coupling of Weyl curvatures to electromagnetic fields is considered in Brans-Dicke-Maxwell theory. The gravitational field equations are formulated in a Riemannian spacetime where the spacetime torsion is constrained to zero by the method of Lagrange multipliers in the language of exterior differential forms. The significance and ramifications of non-minimal couplings to gravity are examined in a pp-wave spacetime.\",\"PeriodicalId\":46003,\"journal\":{\"name\":\"Turkish Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3906/fiz-2002-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/fiz-2002-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

在Brans-Dicke-Maxwell理论中考虑了Weyl曲率与电磁场的非极小耦合。引力场方程在黎曼时空中由拉格朗日乘子的方法以外部微分形式表达,其中时空扭转被约束为零。在pp波时空中研究了引力非极小耦合的意义和分支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonminimally coupled, conformally extended Einstein-Maxwell theory of pp-waves
A non-minimal coupling of Weyl curvatures to electromagnetic fields is considered in Brans-Dicke-Maxwell theory. The gravitational field equations are formulated in a Riemannian spacetime where the spacetime torsion is constrained to zero by the method of Lagrange multipliers in the language of exterior differential forms. The significance and ramifications of non-minimal couplings to gravity are examined in a pp-wave spacetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Physics
Turkish Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
0.00%
发文量
8
期刊介绍: The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信