长度偏差和I型滤波存在下香农熵的估计

Q3 Business, Management and Accounting
R. Rajesh, R. G., S. Sunoj
{"title":"长度偏差和I型滤波存在下香农熵的估计","authors":"R. Rajesh, R. G., S. Sunoj","doi":"10.1080/01966324.2021.1941452","DOIUrl":null,"url":null,"abstract":"Abstract Length-biased data appear when sampling lifetimes by cross-section. This article presents a nonparametric kernel estimators of entropy function for the length-biased sample under type I censoring. We have shown that the proposed estimator is consistent and asymptotically normal under suitable regularity conditions. We have conducted simulation studies to assess the performance of the proposed estimators.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"160 - 169"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1941452","citationCount":"1","resultStr":"{\"title\":\"Estimation of Shannon Entropy in the Presence of Length-Bias and Type I Censoring\",\"authors\":\"R. Rajesh, R. G., S. Sunoj\",\"doi\":\"10.1080/01966324.2021.1941452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Length-biased data appear when sampling lifetimes by cross-section. This article presents a nonparametric kernel estimators of entropy function for the length-biased sample under type I censoring. We have shown that the proposed estimator is consistent and asymptotically normal under suitable regularity conditions. We have conducted simulation studies to assess the performance of the proposed estimators.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"41 1\",\"pages\":\"160 - 169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1941452\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1941452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1941452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1

摘要

摘要按横截面采样寿命时,数据出现长度偏差。本文给出了一类截断下长度偏样本的熵函数的非参数核估计。在适当的正则性条件下,我们证明了所提出的估计量是相合的和渐近正态的。我们进行了模拟研究,以评估建议的估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Shannon Entropy in the Presence of Length-Bias and Type I Censoring
Abstract Length-biased data appear when sampling lifetimes by cross-section. This article presents a nonparametric kernel estimators of entropy function for the length-biased sample under type I censoring. We have shown that the proposed estimator is consistent and asymptotically normal under suitable regularity conditions. We have conducted simulation studies to assess the performance of the proposed estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信