平面平行流动的Friedrichs不等式和强化充分稳定性条件

IF 0.3 Q4 MECHANICS
D. V. Georgievskii
{"title":"平面平行流动的Friedrichs不等式和强化充分稳定性条件","authors":"D. V. Georgievskii","doi":"10.3103/S0027133022030049","DOIUrl":null,"url":null,"abstract":"<p>From the standpoint of the linearized stability theory, two eigenvalue problems for the Orr–Sommerfeld equation with two groups of boundary conditions having a certain mechanical meaning are considered. The stability parameter, which is a real part of the spectral parameter, is estimated on the basis of the integral relations method operating with quadratic functionals. The technique of the method involves the application of the Friedrichs inequality for various classes of complex-valued functions. Using the minimizing property of the first positive eigenvalues in the corresponding problems, the values of the constants in some Friedrichs inequalities are increased, which entails the strengthening of the stability sufficient integral estimates for plane-parallel shear flows in a plane layer.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"77 3","pages":"61 - 65"},"PeriodicalIF":0.3000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friedrichs Inequalities and Sharpened Sufficient Stability Conditions of Plane-Parallel Flows\",\"authors\":\"D. V. Georgievskii\",\"doi\":\"10.3103/S0027133022030049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>From the standpoint of the linearized stability theory, two eigenvalue problems for the Orr–Sommerfeld equation with two groups of boundary conditions having a certain mechanical meaning are considered. The stability parameter, which is a real part of the spectral parameter, is estimated on the basis of the integral relations method operating with quadratic functionals. The technique of the method involves the application of the Friedrichs inequality for various classes of complex-valued functions. Using the minimizing property of the first positive eigenvalues in the corresponding problems, the values of the constants in some Friedrichs inequalities are increased, which entails the strengthening of the stability sufficient integral estimates for plane-parallel shear flows in a plane layer.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"77 3\",\"pages\":\"61 - 65\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133022030049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133022030049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

从线性化稳定性理论的观点出发,考虑了具有一定力学意义的两组边界条件的Orr-Sommerfeld方程的两个特征值问题。稳定性参数是谱参数的实部,利用二次函数的积分关系法进行估计。该方法的技巧涉及到对各种复值函数的弗里德里希不等式的应用。利用相应问题的第一个正特征值的极小性,增大了一些friedrichhs不等式的常数值,从而加强了平面层内平面平行剪切流的稳定性充分积分估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Friedrichs Inequalities and Sharpened Sufficient Stability Conditions of Plane-Parallel Flows

From the standpoint of the linearized stability theory, two eigenvalue problems for the Orr–Sommerfeld equation with two groups of boundary conditions having a certain mechanical meaning are considered. The stability parameter, which is a real part of the spectral parameter, is estimated on the basis of the integral relations method operating with quadratic functionals. The technique of the method involves the application of the Friedrichs inequality for various classes of complex-valued functions. Using the minimizing property of the first positive eigenvalues in the corresponding problems, the values of the constants in some Friedrichs inequalities are increased, which entails the strengthening of the stability sufficient integral estimates for plane-parallel shear flows in a plane layer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信