关于刚体在粒子流中带固定点的运动

IF 0.3 Q4 MECHANICS
M. M. Gadzhiev, A. S. Kuleshov
{"title":"关于刚体在粒子流中带固定点的运动","authors":"M. M. Gadzhiev,&nbsp;A. S. Kuleshov","doi":"10.3103/S0027133022030037","DOIUrl":null,"url":null,"abstract":"<p>The problem of motion of a rigid body with a fixed point in a free molecular flow of particles is considered. It is shown that the equations of motion of this body generalize the classical Euler–Poisson equations of motion of a heavy rigid body with a fixed point, and they are represented in the form of the classical Euler–Poisson equations in the case when the surface of the body in a flow of particles is a sphere. The existence of first integrals in the considered system is discussed.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"77 3","pages":"75 - 86"},"PeriodicalIF":0.3000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Motion of a Rigid Body with a Fixed Point in a Flow of Particles\",\"authors\":\"M. M. Gadzhiev,&nbsp;A. S. Kuleshov\",\"doi\":\"10.3103/S0027133022030037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of motion of a rigid body with a fixed point in a free molecular flow of particles is considered. It is shown that the equations of motion of this body generalize the classical Euler–Poisson equations of motion of a heavy rigid body with a fixed point, and they are represented in the form of the classical Euler–Poisson equations in the case when the surface of the body in a flow of particles is a sphere. The existence of first integrals in the considered system is discussed.</p>\",\"PeriodicalId\":710,\"journal\":{\"name\":\"Moscow University Mechanics Bulletin\",\"volume\":\"77 3\",\"pages\":\"75 - 86\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027133022030037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133022030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了一个刚体在自由分子流中定点运动的问题。证明了该物体的运动方程推广了具有不动点的重刚体的经典欧拉-泊松运动方程,并以质点流中物体表面为球面时的经典欧拉-泊松方程的形式表示。讨论了所考虑的系统中第一积分的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Motion of a Rigid Body with a Fixed Point in a Flow of Particles

The problem of motion of a rigid body with a fixed point in a free molecular flow of particles is considered. It is shown that the equations of motion of this body generalize the classical Euler–Poisson equations of motion of a heavy rigid body with a fixed point, and they are represented in the form of the classical Euler–Poisson equations in the case when the surface of the body in a flow of particles is a sphere. The existence of first integrals in the considered system is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信