某些极大曲线的$a$数

IF 0.6 Q3 MATHEMATICS
V. Nourozi, Saeed Tafazolian, Farhad Rahamti
{"title":"某些极大曲线的$a$数","authors":"V. Nourozi, Saeed Tafazolian, Farhad Rahamti","doi":"10.22108/TOC.2021.124678.1758","DOIUrl":null,"url":null,"abstract":"In this paper, we compute a formula for the $a$-number of certain maximal curves given by the equation $y^{q}+y=x^{frac{q+1}{2}}$ over the finite field $mathbb{F}_{q^2}$. The same problem is studied for the maximal curve corresponding to $sum_{t=1}^s y^{q/2^t}=x^{q+1}$ with $q=2^s$, over the finite field $mathbb{F}_{q^2}$.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"121-128"},"PeriodicalIF":0.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The $a$-number of jacobians of certain maximal curves\",\"authors\":\"V. Nourozi, Saeed Tafazolian, Farhad Rahamti\",\"doi\":\"10.22108/TOC.2021.124678.1758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compute a formula for the $a$-number of certain maximal curves given by the equation $y^{q}+y=x^{frac{q+1}{2}}$ over the finite field $mathbb{F}_{q^2}$. The same problem is studied for the maximal curve corresponding to $sum_{t=1}^s y^{q/2^t}=x^{q+1}$ with $q=2^s$, over the finite field $mathbb{F}_{q^2}$.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"10 1\",\"pages\":\"121-128\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2021.124678.1758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2021.124678.1758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们计算了有限域$mathbb上由方程$y^{q}+y=x^{frac{q+1}{2}}$给出的某些最大曲线的$a$数的公式{F}_{q^2}$。对于有限域$mathbb上对应于$sum_{t=1}^sy^{q/2^t}=x^{q+1}$且$q=2^s$的最大曲线,也研究了同样的问题{F}_{q^2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The $a$-number of jacobians of certain maximal curves
In this paper, we compute a formula for the $a$-number of certain maximal curves given by the equation $y^{q}+y=x^{frac{q+1}{2}}$ over the finite field $mathbb{F}_{q^2}$. The same problem is studied for the maximal curve corresponding to $sum_{t=1}^s y^{q/2^t}=x^{q+1}$ with $q=2^s$, over the finite field $mathbb{F}_{q^2}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信