线上凸阶Wasserstein投影的Lipschitz连续性

Pub Date : 2022-08-22 DOI:10.1214/23-ecp525
B. Jourdain, W. Margheriti, G. Pammer
{"title":"线上凸阶Wasserstein投影的Lipschitz连续性","authors":"B. Jourdain, W. Margheriti, G. Pammer","doi":"10.1214/23-ecp525","DOIUrl":null,"url":null,"abstract":"Wasserstein projections in the convex order were first considered in the framework of weak optimal transport, and found application in various problems such as concentration inequalities and martingale optimal transport. In dimension one, it is well-known that the set of probability measures with a given mean is a lattice w.r.t. the convex order. Our main result is that, contrary to the minimum and maximum in the convex order, the Wasserstein projections are Lipschitz continuity w.r.t. the Wasserstein distance in dimension one. Moreover, we provide examples that show sharpness of the obtained bounds for the 1-Wasserstein distance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lipschitz continuity of the Wasserstein projections in the convex order on the line\",\"authors\":\"B. Jourdain, W. Margheriti, G. Pammer\",\"doi\":\"10.1214/23-ecp525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wasserstein projections in the convex order were first considered in the framework of weak optimal transport, and found application in various problems such as concentration inequalities and martingale optimal transport. In dimension one, it is well-known that the set of probability measures with a given mean is a lattice w.r.t. the convex order. Our main result is that, contrary to the minimum and maximum in the convex order, the Wasserstein projections are Lipschitz continuity w.r.t. the Wasserstein distance in dimension one. Moreover, we provide examples that show sharpness of the obtained bounds for the 1-Wasserstein distance.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

首先在弱最优输运的框架下考虑了凸阶的Wasserstein投影,并在集中不等式和鞅最优输运等各种问题中得到了应用。在维一中,众所周知,具有给定均值的概率测度集合是一个格,而不是凸阶。我们的主要结果是,与凸阶的最小值和最大值相反,Wasserstein投影是Lipschitz连续性,而不是一维的Wasserstein距离。此外,我们还提供了一些例子来证明所得到的1-Wasserstein距离边界的清晰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Lipschitz continuity of the Wasserstein projections in the convex order on the line
Wasserstein projections in the convex order were first considered in the framework of weak optimal transport, and found application in various problems such as concentration inequalities and martingale optimal transport. In dimension one, it is well-known that the set of probability measures with a given mean is a lattice w.r.t. the convex order. Our main result is that, contrary to the minimum and maximum in the convex order, the Wasserstein projections are Lipschitz continuity w.r.t. the Wasserstein distance in dimension one. Moreover, we provide examples that show sharpness of the obtained bounds for the 1-Wasserstein distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信