高水头混流式水轮机尾水管部分负荷简化数值模拟

Q3 Engineering
J. Joy, M. Cervantes, M. Raisee
{"title":"高水头混流式水轮机尾水管部分负荷简化数值模拟","authors":"J. Joy, M. Cervantes, M. Raisee","doi":"10.5293/IJFMS.2021.14.1.095","DOIUrl":null,"url":null,"abstract":"In the present study, a reduced model of the Francis-99 model turbine was investigated numerically at part load operating condition. The reduced model consists of a standalone draft tube domain of the Francis-99 model turbine. Numerical studies performed in the past on nearly complete hydro-turbine models (inclusive of the spiral casing, distributor domains, runner, and draft tube) reportedly consist of a large number of computational grids. This may increase the computational costs and data storage required to perform numerical analysis, which could be a setback for future research on new design concepts and optimization study of the draft tube domain. The reduced model was developed by mapping the phase averaged axial, radial, and tangential velocity profiles from the runner exit to the inlet of the standalone draft tube domain. Additionally, turbulent kinetic energy (k) and turbulent eddy dissipation (ε) variables were also considered for better flow prediction inside the draft tube domain. Two methods for mapping inlet boundary conditions were considered in the present study. In the first method, the entire planar profile of the runner-draft tube interface was considered. In the second method, the variables along a radial profile at the runner exit were considered with an axissymmetric flow assumption over the entire draft tube inlet plane. The numerical results obtained from the Francis-99 reduced model turbine were validated against the numerical model of the NVKS Francis-99 model turbine (with available structured mesh) that was also analysed using the passage flow numerical technique and available experimental results. The results were found to be in reasonable agreement, with each other. The present study could be useful for the future mitigation study of rotating vortex rope by modifying the draft tube domain.","PeriodicalId":38576,"journal":{"name":"International Journal of Fluid Machinery and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Numerical Modeling of a High Head Francis Turbine Draft Tube at Part Load\",\"authors\":\"J. Joy, M. Cervantes, M. Raisee\",\"doi\":\"10.5293/IJFMS.2021.14.1.095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, a reduced model of the Francis-99 model turbine was investigated numerically at part load operating condition. The reduced model consists of a standalone draft tube domain of the Francis-99 model turbine. Numerical studies performed in the past on nearly complete hydro-turbine models (inclusive of the spiral casing, distributor domains, runner, and draft tube) reportedly consist of a large number of computational grids. This may increase the computational costs and data storage required to perform numerical analysis, which could be a setback for future research on new design concepts and optimization study of the draft tube domain. The reduced model was developed by mapping the phase averaged axial, radial, and tangential velocity profiles from the runner exit to the inlet of the standalone draft tube domain. Additionally, turbulent kinetic energy (k) and turbulent eddy dissipation (ε) variables were also considered for better flow prediction inside the draft tube domain. Two methods for mapping inlet boundary conditions were considered in the present study. In the first method, the entire planar profile of the runner-draft tube interface was considered. In the second method, the variables along a radial profile at the runner exit were considered with an axissymmetric flow assumption over the entire draft tube inlet plane. The numerical results obtained from the Francis-99 reduced model turbine were validated against the numerical model of the NVKS Francis-99 model turbine (with available structured mesh) that was also analysed using the passage flow numerical technique and available experimental results. The results were found to be in reasonable agreement, with each other. The present study could be useful for the future mitigation study of rotating vortex rope by modifying the draft tube domain.\",\"PeriodicalId\":38576,\"journal\":{\"name\":\"International Journal of Fluid Machinery and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Machinery and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5293/IJFMS.2021.14.1.095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Machinery and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5293/IJFMS.2021.14.1.095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文对Francis-99型水轮机在部分负荷工况下的简化模型进行了数值研究。简化模型包括一个独立的引水管域的弗朗西斯-99模型涡轮机。据报道,过去对几乎完整的水轮机模型(包括螺旋机匣、分布区域、流道和尾水管)进行的数值研究包含大量的计算网格。这可能会增加执行数值分析所需的计算成本和数据存储,这可能会阻碍未来研究新的设计概念和尾水管领域的优化研究。简化模型是通过绘制从流道出口到独立尾水管入口的相位平均轴向、径向和切向速度分布来建立的。此外,为了更好地预测尾水管内的流动,还考虑了湍流动能(k)和湍流涡流耗散(ε)变量。本文考虑了两种绘制进气道边界条件的方法。在第一种方法中,考虑了流道-尾水管界面的整个平面轮廓。在第二种方法中,考虑沿流道出口径向轮廓的变量,并假设整个尾水管进口平面上的轴对称流动。将简化后的Francis-99型水轮机的数值计算结果与NVKS Francis-99型水轮机的数值模型(含现有结构网格)进行了验证,并利用通道流数值技术和现有的实验结果进行了分析。结果发现是在合理的一致,彼此。本文的研究对今后通过改变尾水管域来缓解旋转涡绳的研究具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Numerical Modeling of a High Head Francis Turbine Draft Tube at Part Load
In the present study, a reduced model of the Francis-99 model turbine was investigated numerically at part load operating condition. The reduced model consists of a standalone draft tube domain of the Francis-99 model turbine. Numerical studies performed in the past on nearly complete hydro-turbine models (inclusive of the spiral casing, distributor domains, runner, and draft tube) reportedly consist of a large number of computational grids. This may increase the computational costs and data storage required to perform numerical analysis, which could be a setback for future research on new design concepts and optimization study of the draft tube domain. The reduced model was developed by mapping the phase averaged axial, radial, and tangential velocity profiles from the runner exit to the inlet of the standalone draft tube domain. Additionally, turbulent kinetic energy (k) and turbulent eddy dissipation (ε) variables were also considered for better flow prediction inside the draft tube domain. Two methods for mapping inlet boundary conditions were considered in the present study. In the first method, the entire planar profile of the runner-draft tube interface was considered. In the second method, the variables along a radial profile at the runner exit were considered with an axissymmetric flow assumption over the entire draft tube inlet plane. The numerical results obtained from the Francis-99 reduced model turbine were validated against the numerical model of the NVKS Francis-99 model turbine (with available structured mesh) that was also analysed using the passage flow numerical technique and available experimental results. The results were found to be in reasonable agreement, with each other. The present study could be useful for the future mitigation study of rotating vortex rope by modifying the draft tube domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fluid Machinery and Systems
International Journal of Fluid Machinery and Systems Engineering-Industrial and Manufacturing Engineering
CiteScore
1.80
自引率
0.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信