基于A-star算法和人工势场的移动机器人编队控制

N. Manuel, N. Inanç, Mustafa Yasin Erten
{"title":"基于A-star算法和人工势场的移动机器人编队控制","authors":"N. Manuel, N. Inanç, Mustafa Yasin Erten","doi":"10.14203/j.mev.2021.v12.57-67","DOIUrl":null,"url":null,"abstract":"Formations or groups of robots become essential in cases where a single robot is insufficient to satisfy a given task. With an increasingly automated world, studies on various topics related to robotics have been carried out in both the industrial and academic arenas. In this paper, the control of the formation of differential mobile robots based on the leader-follower approach is presented. The leader's movement is based on the least cost path obtained by the A-star algorithm, thus ensuring a safe and shortest possible route for the leader. Follower robots track the leader's position in real time. Based on this information and the desired distance and angle values, the leader robot is followed. To ensure that the followers do not collide with each other and with the obstacles in the environment, a controller based on Artificial Potential Fields is designed. Stability analysis using Lyapunov theory is performed on the linearized model of the system. To verify the implemented technique, a simulator was designed using the MATLAB programming language. Seven experiments are conducted under different conditions to show the performance of the approach. The distance and orientation errors are less than 0.1 meters and 0.1 radians, respectively. Overall, mobile robots are able to reach the goal position, maintaining the desired formation, in finite time.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control of mobile robot formations using A-star algorithm and artificial potential fields\",\"authors\":\"N. Manuel, N. Inanç, Mustafa Yasin Erten\",\"doi\":\"10.14203/j.mev.2021.v12.57-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formations or groups of robots become essential in cases where a single robot is insufficient to satisfy a given task. With an increasingly automated world, studies on various topics related to robotics have been carried out in both the industrial and academic arenas. In this paper, the control of the formation of differential mobile robots based on the leader-follower approach is presented. The leader's movement is based on the least cost path obtained by the A-star algorithm, thus ensuring a safe and shortest possible route for the leader. Follower robots track the leader's position in real time. Based on this information and the desired distance and angle values, the leader robot is followed. To ensure that the followers do not collide with each other and with the obstacles in the environment, a controller based on Artificial Potential Fields is designed. Stability analysis using Lyapunov theory is performed on the linearized model of the system. To verify the implemented technique, a simulator was designed using the MATLAB programming language. Seven experiments are conducted under different conditions to show the performance of the approach. The distance and orientation errors are less than 0.1 meters and 0.1 radians, respectively. Overall, mobile robots are able to reach the goal position, maintaining the desired formation, in finite time.\",\"PeriodicalId\":30530,\"journal\":{\"name\":\"Journal of Mechatronics Electrical Power and Vehicular Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechatronics Electrical Power and Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14203/j.mev.2021.v12.57-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechatronics Electrical Power and Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/j.mev.2021.v12.57-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在单个机器人不足以完成给定任务的情况下,编队或机器人组变得必不可少。随着世界自动化程度的提高,工业和学术领域都开展了与机器人相关的各种主题的研究。本文提出了基于leader-follower方法的差分移动机器人编队控制问题。leader的运动基于a -star算法得到的代价最小的路径,从而保证leader有一条安全最短的可能路径。随从机器人实时跟踪领导者的位置。基于这些信息和期望的距离和角度值,领导机器人被跟随。为了保证follower不相互碰撞,不与环境中的障碍物发生碰撞,设计了基于人工势场的控制器。利用李雅普诺夫理论对系统的线性化模型进行了稳定性分析。为了验证所实现的技术,利用MATLAB编程语言设计了仿真器。在不同条件下进行了7次实验,验证了该方法的性能。距离误差小于0.1米,方向误差小于0.1弧度。总的来说,移动机器人能够在有限的时间内到达目标位置,保持期望的队形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of mobile robot formations using A-star algorithm and artificial potential fields
Formations or groups of robots become essential in cases where a single robot is insufficient to satisfy a given task. With an increasingly automated world, studies on various topics related to robotics have been carried out in both the industrial and academic arenas. In this paper, the control of the formation of differential mobile robots based on the leader-follower approach is presented. The leader's movement is based on the least cost path obtained by the A-star algorithm, thus ensuring a safe and shortest possible route for the leader. Follower robots track the leader's position in real time. Based on this information and the desired distance and angle values, the leader robot is followed. To ensure that the followers do not collide with each other and with the obstacles in the environment, a controller based on Artificial Potential Fields is designed. Stability analysis using Lyapunov theory is performed on the linearized model of the system. To verify the implemented technique, a simulator was designed using the MATLAB programming language. Seven experiments are conducted under different conditions to show the performance of the approach. The distance and orientation errors are less than 0.1 meters and 0.1 radians, respectively. Overall, mobile robots are able to reach the goal position, maintaining the desired formation, in finite time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信