Ruizhe Yang , Zhenchao Wu , Wentai Fang , Hongliang Zhang , Wenqi Wang , Longsheng Fu , Yaqoob Majeed , Rui Li , Yongjie Cui
{"title":"基于图像处理和机器学习的水培生菜叶片异常检测","authors":"Ruizhe Yang , Zhenchao Wu , Wentai Fang , Hongliang Zhang , Wenqi Wang , Longsheng Fu , Yaqoob Majeed , Rui Li , Yongjie Cui","doi":"10.1016/j.inpa.2021.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate and fast detection of abnormal hydroponic lettuce leaves is primary technology for robotic sorting. Yellow and rotten leaves are main types of abnormal leaves in hydroponic lettuce. This study aims to demonstrate a feasibility of detecting yellow and rotten leaves of hydroponic lettuce by machine learning models, i.e. Multiple Linear Regression (MLR), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). One-way analysis of variance was applied to reduce RGB, HSV, and L*a*b* features number of hydroponic lettuce images. Image binarization, image mask, and image filling methods were employed to segment hydroponic lettuce from an image for models testing. Results showed that G, H, and a* were selected from RGB, HSV, and L*a*b* for training models. It took about 20.25 s to detect an image with 3 024 × 4 032 pixels by KNN, which was much longer than MLR (0.61 s) and SVM (1.98 s). MLR got detection accuracies of 89.48% and 99.29% for yellow and rotten leaves, respectively, while SVM reached 98.33% and 97.91%, respectively. SVM was more robust than MLR in detecting yellow and rotten leaves of hydroponic. Thus, it was possible for abnormal hydroponic lettuce leaves detection by machine learning methods.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 1","pages":"Pages 1-10"},"PeriodicalIF":7.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning\",\"authors\":\"Ruizhe Yang , Zhenchao Wu , Wentai Fang , Hongliang Zhang , Wenqi Wang , Longsheng Fu , Yaqoob Majeed , Rui Li , Yongjie Cui\",\"doi\":\"10.1016/j.inpa.2021.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate and fast detection of abnormal hydroponic lettuce leaves is primary technology for robotic sorting. Yellow and rotten leaves are main types of abnormal leaves in hydroponic lettuce. This study aims to demonstrate a feasibility of detecting yellow and rotten leaves of hydroponic lettuce by machine learning models, i.e. Multiple Linear Regression (MLR), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). One-way analysis of variance was applied to reduce RGB, HSV, and L*a*b* features number of hydroponic lettuce images. Image binarization, image mask, and image filling methods were employed to segment hydroponic lettuce from an image for models testing. Results showed that G, H, and a* were selected from RGB, HSV, and L*a*b* for training models. It took about 20.25 s to detect an image with 3 024 × 4 032 pixels by KNN, which was much longer than MLR (0.61 s) and SVM (1.98 s). MLR got detection accuracies of 89.48% and 99.29% for yellow and rotten leaves, respectively, while SVM reached 98.33% and 97.91%, respectively. SVM was more robust than MLR in detecting yellow and rotten leaves of hydroponic. Thus, it was possible for abnormal hydroponic lettuce leaves detection by machine learning methods.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 1\",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning
Accurate and fast detection of abnormal hydroponic lettuce leaves is primary technology for robotic sorting. Yellow and rotten leaves are main types of abnormal leaves in hydroponic lettuce. This study aims to demonstrate a feasibility of detecting yellow and rotten leaves of hydroponic lettuce by machine learning models, i.e. Multiple Linear Regression (MLR), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). One-way analysis of variance was applied to reduce RGB, HSV, and L*a*b* features number of hydroponic lettuce images. Image binarization, image mask, and image filling methods were employed to segment hydroponic lettuce from an image for models testing. Results showed that G, H, and a* were selected from RGB, HSV, and L*a*b* for training models. It took about 20.25 s to detect an image with 3 024 × 4 032 pixels by KNN, which was much longer than MLR (0.61 s) and SVM (1.98 s). MLR got detection accuracies of 89.48% and 99.29% for yellow and rotten leaves, respectively, while SVM reached 98.33% and 97.91%, respectively. SVM was more robust than MLR in detecting yellow and rotten leaves of hydroponic. Thus, it was possible for abnormal hydroponic lettuce leaves detection by machine learning methods.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining