{"title":"基于深度强化学习的多Agent系统中面向任务的通信","authors":"Guojun He, Mingjie Feng, Yu Zhang, Guanghua Liu, Yueyue Dai, Tao Jiang","doi":"10.1109/MWC.003.2200469","DOIUrl":null,"url":null,"abstract":"Driven by the increasing demand for executing intelligent tasks in various fields, multi-agent system (MAS) has drawn significant attention recently. An MAS relies on efficient communication between agents to exchange task-relevant information, so as support cooperative operation. Meanwhile, traditional communication systems are bit-oriented, which neglect the content and task relevance of the transmitted data. Thus, if bit-oriented communication patterns are applied in a MAS, a significant amount of task-irrelevant data would be transmitted, leading to communication resource waste and low operational efficiency. Considering that many emerging MASs are data-intensive and delay-sensitive, traditional ways of communication are unfit for these MASs. Task-oriented communication is a promising solution to deal with this issue, but its application in MAS still faces various challenges. In this article, we propose a task-oriented communication based framework for MAS, aiming to support efficient cooperation among agents. This framework specifies the collection, transmission, and processing of task-relevant information, in which task relevance is fully utilized to enhance communication efficiency. Based on the proposed framework, we then apply deep reinforcement learning (DRL) to implement task-oriented communication, in which a modular design and an end-to-end design for information extraction, data transmission, and task execution are proposed. Finally, the open problems for future research are discussed.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"30 1","pages":"112-119"},"PeriodicalIF":10.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Task-Oriented Communication in Multi-Agent Systems\",\"authors\":\"Guojun He, Mingjie Feng, Yu Zhang, Guanghua Liu, Yueyue Dai, Tao Jiang\",\"doi\":\"10.1109/MWC.003.2200469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the increasing demand for executing intelligent tasks in various fields, multi-agent system (MAS) has drawn significant attention recently. An MAS relies on efficient communication between agents to exchange task-relevant information, so as support cooperative operation. Meanwhile, traditional communication systems are bit-oriented, which neglect the content and task relevance of the transmitted data. Thus, if bit-oriented communication patterns are applied in a MAS, a significant amount of task-irrelevant data would be transmitted, leading to communication resource waste and low operational efficiency. Considering that many emerging MASs are data-intensive and delay-sensitive, traditional ways of communication are unfit for these MASs. Task-oriented communication is a promising solution to deal with this issue, but its application in MAS still faces various challenges. In this article, we propose a task-oriented communication based framework for MAS, aiming to support efficient cooperation among agents. This framework specifies the collection, transmission, and processing of task-relevant information, in which task relevance is fully utilized to enhance communication efficiency. Based on the proposed framework, we then apply deep reinforcement learning (DRL) to implement task-oriented communication, in which a modular design and an end-to-end design for information extraction, data transmission, and task execution are proposed. Finally, the open problems for future research are discussed.\",\"PeriodicalId\":13342,\"journal\":{\"name\":\"IEEE Wireless Communications\",\"volume\":\"30 1\",\"pages\":\"112-119\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MWC.003.2200469\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.003.2200469","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Deep Reinforcement Learning Based Task-Oriented Communication in Multi-Agent Systems
Driven by the increasing demand for executing intelligent tasks in various fields, multi-agent system (MAS) has drawn significant attention recently. An MAS relies on efficient communication between agents to exchange task-relevant information, so as support cooperative operation. Meanwhile, traditional communication systems are bit-oriented, which neglect the content and task relevance of the transmitted data. Thus, if bit-oriented communication patterns are applied in a MAS, a significant amount of task-irrelevant data would be transmitted, leading to communication resource waste and low operational efficiency. Considering that many emerging MASs are data-intensive and delay-sensitive, traditional ways of communication are unfit for these MASs. Task-oriented communication is a promising solution to deal with this issue, but its application in MAS still faces various challenges. In this article, we propose a task-oriented communication based framework for MAS, aiming to support efficient cooperation among agents. This framework specifies the collection, transmission, and processing of task-relevant information, in which task relevance is fully utilized to enhance communication efficiency. Based on the proposed framework, we then apply deep reinforcement learning (DRL) to implement task-oriented communication, in which a modular design and an end-to-end design for information extraction, data transmission, and task execution are proposed. Finally, the open problems for future research are discussed.
期刊介绍:
IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services.
Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.